The Internet of Things (IoT) and Industrial 4.0 bring enormous potential benefits by enabling highly customised services and applications, which create huge volume and variety of data. However, preserving the privacy in IoT and Industrial 4.0 against re-identification attacks is very challenging. In this work, we considered three main data types generated in IoT: context data, continuous data, and media data. We first proposed a stream data anonymisation method based on k-anonymity for data collected by IoT devices; and then privacy enhancing techniques for both continuous data and media data were proposed for different IoT scenarios. The experiment results show that the proposed techniques can well preserve privacy without significantly affecting the utility of the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.