Adiponectin, an adipose tissue-specific plasma protein, was recently revealed to have anti-inflammatory effects on the cellular components of vascular wall. Its plasma levels were significantly lower in men than in women and lower in human subjects with obesity, type 2 diabetes mellitus, or coronary artery disease. Therefore, it may provide a biological link between obesity and obesity-related disorders such as atherosclerosis, against which it may confer protection. In this study, we observed the changes of plasma adiponectin levels with body weight reduction among 22 obese patients who received gastric partition surgery. A 46% increase of mean plasma adiponectin level was accompanied by a 21% reduction in mean body mass index. The change in plasma adiponectin levels was significantly correlated with the changes in body mass index (r = -0.5, P = 0.01), waist (r = -0.4, P = 0.04) and hip (r = -0.6, P = 0.0007) circumferences, and steady state plasma glucose levels (r = -0.5, P = 0.04). In multivariate linear regression models, the increase in adiponectin as a dependent variable was significantly related to the decrease in hip circumference (beta = -0.16, P = 0.028), after adjusting body mass index and waist circumference. The change in steady state plasma glucose levels as a dependent variable was related to the increase of adiponectin with a marginal significance (beta = -0.92, P = 0.053), after adjusting body mass index and waist and hip circumferences. In conclusion, body weight reduction increased the plasma levels of a protective adipocytokine, adiponectin. In addition, the increase in plasma adiponectin despite the reduction of the only tissue of its own synthesis suggests that the expression of adiponectin is under feedback inhibition in obesity.
Sensory neuropathy is a prominent component of diabetic neuropathy. It is not entirely clear how diabetes influences skin innervation, and whether these changes are correlated with clinical signs and laboratory findings. To investigate these issues, we performed skin biopsies on the distal leg of 38 consecutive type 2 diabetic patients with sensory symptoms in lower limbs (25 males and 13 females, aged 56.2 +/- 9.4 years) and analysed the correlations of intraepidermal nerve fibre (IENF) densities in skin with glycaemic status (duration of diabetes, HbA1C, and fasting and post-prandial glucose levels), and functional parameters of small fibres (warm and cold thresholds) and large fibres (vibratory threshold and parameters of nerve conduction studies). Clinically, 23 patients (60.5%) had signs of small-fibre impairment, and 19 patients (50.0%) had signs of large-fibre impairment. IENF densities were much lower in diabetic patients than in age- and gender-matched controls (1.794 +/- 2.120 versus 9.359 +/- 3.466 fibres/mm, P < 0.0001), and 81.6% (31/38) of diabetic patients had reduced IENF densities. IENF densities were negatively associated with the duration of diabetes (standardized coefficient: -0.422, P = 0.015) by analysis with a multivariate linear regression model. Abnormal results of functional examinations were present in 81.6% (warm threshold), 57.9% (cold threshold), 63.2% (vibratory threshold) and 49% (amplitude of sural sensory action potential) of diabetic patients. Among the three sensory thresholds, the warm threshold temperature had the highest correlation with IENF densities (standardized coefficient: -0.773, P < 0.0001). On nerve conduction studies in lower-limb nerves, there were abnormal responses in 54.1% of sural nerves, and 50.0% of peroneal nerves. Of neurophysiological parameters, the amplitude of the sural sensory action potential had the highest correlation with IENF density (standardized coefficient: 0.739, P < 0.0001). On clinical examination, 15 patients showed no sign of small-fibre impairment, but seven of these patients had reduced IENF densities. In conclusion, small-fibre sensory neuropathy presenting with reduced IENF densities and correlated elevation of warm thresholds is a major manifestation of type 2 diabetes. In addition, the extent of skin denervation increases with diabetic duration.
OBJECTIVE—Adiponectin, a plasma protein exclusively synthesized and secreted by adipose tissue, has recently been shown to have anti-inflammatory, antiatherogenic properties in vitro and beneficial metabolic effects in animals. Lower plasma levels of adiponectin have been documented in human subjects with metabolic syndrome and coronary artery disease. We investigated whether the level of this putative protective adipocytokine could be increased by treatment with a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist in diabetic patients. RESEARCH DESIGN AND METHODS—Type 2 diabetic patients (30 in the treatment group and 34 in the placebo group) were recruited for a randomized double-blind placebo-controlled trial for 6 months with the PPAR-γ agonist rosiglitazone. Blood samples were collected and metabolic variables and adiponectin levels were determined in all patients before initiation of the study. RESULTS—In the rosiglitazone group, mean plasma adiponectin level was increased by more than twofold (P < 0.0005), whereas no change was observed in the placebo group. Multivariate linear regression analysis showed that whether rosiglitazone was used was the single variable significantly related to the changes of plasma adiponectin. The amount of variance in changes of plasma adiponectin level explained by the treatment was ∼24% (r2 = 0.24) after adjusting for age, sex, and changes in fasting plasma glucose, HbA1c, insulin resistance index, and BMI. CONCLUSIONS—Rosiglitazone increases plasma adiponectin levels in type 2 diabetic subjects. Whether this may contribute to the antihyperglycemic and putative antiatherogenic benefits of PPAR-γ agonists in type 2 diabetic patients warrants further investigation.
The incidence of diabetes, including type 1, remained stable over this 10-year period in Taiwan. However, the incidence rate in men aged 20-59 years was higher than that in age-matched women. With our nationwide database, subgroup analysis of DM incidence can be performed to refine our health policies for the prevention, screening, and treatment of diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.