We present a novel strategy for the highly selective detection of single-nucleotide variation at room temperature, based on an extremely specific interaction between Lambda exonuclease (λ exo) and a chemically modified DNA structure.
Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5′ non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5′ side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π–π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.
Sensitive detection of the single nucleotide variants in cell-free DNA (cfDNA) may provide great opportunity for minimally invasive diagnosis and prognosis of cancer and other related diseases. Here, we demonstrate a facile new strategy for quantitative measurement of cfDNA mutations at low abundance in the cancer patients’ plasma samples. The method takes advantage of a novel property of lambda exonuclease which effectively digests a 5′-fluorophore modified dsDNA with a 2-nt overhang structure and sensitively responds to the presence of mismatched base pairs in the duplex. It achieves a limit of detection as low as 0.02% (percentage of the mutant type) for BRAFV600E mutation, NRASQ61R mutation and three types of EGFR mutations (G719S, T790M and L858R). The method enabled identification of BRAFV600E and EGFRL858R mutations in the plasma of different cancer patients within only 3.5 h. Moreover, the terminal structure-dependent reaction greatly simplifies the probe design and reduces the cost, and the assay only requires a regular real-time PCR machine. This new method may serve as a practical tool for quantitative measurement of low-abundance mutations in clinical samples for providing genetic mutation information with prognostic or therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.