We employ first-principles calculations combined with self-consistent phonon theory and Boltzmann transport equations to investigate the thermal transport and thermoelectric properties of full-Heusler compound Na2TlSb. Our findings exhibit that the strong quartic anharmonicity and temperature dependence of the Tl atom with rattling behavior plays an important role in the lattice stability of Na2TlSb. We find that soft Tl-Sb bonding and resonant bonding in the pseudocage composed of the Na and Sb atoms interaction is responsible for ultralow κL. Meanwhile, the multi-valley band structure increases the band degeneracy, results in a high power factor in p-type Na2TlSb. The coexistence of ultralow κL and high power factor presents that Na2TlSb is a potential candidate for thermoelectric applications. Moreover, these findings help to understand the origin of ultralow κL of full-Heusler compounds with strong quartic anharmonicity, leading to the rational design of full-Heusler compounds with high thermoelectric performance.
A good thermoelectric (TE) performance is usually the result of the coexistence of an ultralow thermal conductivity and a high TE power factor in the same material. In this paper,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.