[1] In this paper we summarize recent research in geocryological studies carried out on the Qinghai-Tibet Plateau that show responses of permafrost to climate change and their environmental implications. Long-term temperature measurements indicate that the lower altitudinal limit of permafrost has moved up by 25 m in the north during the last 30 years and between 50 and 80 m in the south over the last 20 years. Furthermore, the thickness of the active layer has increased by 0.15 to 0.50 m and ground temperature at a depth of 6 m has risen by about 0.1°to 0.3°C between 1996 and 2001. Recent studies show that freeze-thaw cycles in the ground intensify the heat exchange between the atmosphere and the ground surface. The greater the moisture content in the soil, the greater is the influence of freeze-thaw cycling on heat exchange. The water and heat exchange between the atmosphere and the ground surface due to soil freezing and thawing has a significant influence on the climate in eastern Asia. A negative correlation exists between soil moisture and heat balance on the plateau and the amount of summer precipitation in most regions of China. A simple frozen soil parameterization scheme was developed to simulate the interaction between permafrost and climate change. This model, combined with the NCAR Community Climate Model 3.6, is suitable for the simulation of permafrost changes on the plateau. In addition, permafrost degradation is one of the main causes responsible for a dropping groundwater table at the source areas of the Yangtze River and Yellow River, which in turn results in lowering lake water levels, drying swamps and shrinking grasslands.
Abstract. The Tibetan Plateau (TP) has the largest areas of permafrost terrain in the mid-and low-latitude regions of the world. Some permafrost distribution maps have been compiled but, due to limited data sources, ambiguous criteria, inadequate validation, and deficiency of high-quality spatial data sets, there is high uncertainty in the mapping of the permafrost distribution on the TP. We generated a new permafrost map based on freezing and thawing indices from modified Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperatures (LSTs) and validated this map using various ground-based data sets. The soil thermal properties of five soil types across the TP were estimated according to an empirical equation and soil properties (moisture content and bulk density). The temperature at the top of permafrost (TTOP) model was applied to simulate the permafrost distribution. Permafrost, seasonally frozen ground, and unfrozen ground covered areas of 1.06 × 10 6 km 2 (0.97-1.15 × 10 6 km 2 , 90 % confidence interval) (40 %), 1.46 × 10 6 (56 %), and 0.03 × 10 6 km 2 (1 %), respectively, excluding glaciers and lakes. Ground-based observations of the permafrost distribution across the five investigated regions (IRs, located in the transition zones of the permafrost and seasonally frozen ground) and three highway transects (across the entire permafrost regions from north to south) were used to validate the model. Validation results showed that the kappa coefficient varied from 0.38 to 0.78 with a mean of 0.57 for the five IRs and 0.62 to 0.74 with a mean of 0.68 within the three transects. Compared with earlier studies, the TTOP modelling results show greater accuracy. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.