Arias intensity is an essential ground motion measure correlating with the potential for earthquake-induced landslides. The Sichuan-Yunnan region, which is primarily mountainous, is a high incidence region of earthquake-induced landslides in China. However, there is no available attenuation relationship for this intensity measure due to the backward construction of the stations. In this study, we developed a region-specific Arias intensity attenuation relationship using the China Strong-Motion Networks Center (CSMNC) database which was established in 2008. We recommend this relationship be applied in the Sichuan-Yunnan region for moment magnitudes ranging between 4.2 and 7.9, distances ranging between 0 and 400 km and with Vs30 (the average shear-wave velocity in the upper 30 meters of a soil profile) ranging between 128 and 760 m/s. The current study finds that this relationship’s intra-event, inter-event, and total standard deviations are greater than for other regions. This is likely caused by the complicated seismotectonic activities, nonlinear site effects, error from inferring Vs30, basin effects, etc. However, this relationship has the best performance in fitting and predicting the data from the Sichuan-Yunnan region.
Arias intensity is an essential ground motion measure correlating with the potential for earthquake-induced landslides. The Sichuan-Yunnan region, which is primarily mountainous, is a high incidence region of earthquake-induced landslides in China. However, there is no available attenuation relationship for this intensity measure due to the backward construction of the stations. In this study, we developed a region-specific Arias intensity attenuation relationship using the China Strong-Motion Networks Center (CSMNC) database which was established in 2008. We recommend this relationship be applied in the Sichuan-Yunnan region for moment magnitudes ranging between 4.2 and 7.9, distances ranging between 0 and 400 km and with Vs30 (the average shear-wave velocity in the upper 30 meters of a soil profile) ranging between 128 and 760 m/s. The current study finds that this relationship's intra-event, inter-event, and total standard deviations are greater than for other regions. This is likely caused by the complicated seismotectonic activities, nonlinear site effects, error from inferring Vs30, basin effects, etc. However, this relationship has the best performance in fitting and predicting the data from the Sichuan-Yunnan region.
In order to extend the multisource model to vertical ground motion, we fit the vertical ground motion attenuation relationship of the Wenchuan earthquake. Different from traditional attenuation relationship forms, we propose a simplified ground motion attenuation function including site effect via a flag related to VS30. The regression results show that it has site effect on the vertical ground motion of the Wenchuan earthquake and gradually weakens with the increase in periods. According to residuals analysis, the hanging-wall effect on vertical ground motion is strong for the Wenchuan earthquake, especially in short periods. The result analysis indicates that the shape of the vertical response spectrum based on regression is different from that of the horizontal component and complies with the recommended design vertical response spectrum of FEMA P-1050. V/H (vertical-to-horizontal ratios), as a main way to estimate vertical ground motion, cannot be simply fixed as 2/3. Therefore, site location, site condition, and frequency spectrum have to be considered comprehensively. The regression accuracy of the vertical ground motion of the multisource model is slightly higher than that of the point-source model and lower than that of the finite fault source model. It is expected that this model will serve as an alternative for source-to-site distance when multiple asperities are to be modeled in the absence of the detail fault model to get a general scenario of the future ground motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.