The diameter of a micro-tube is very small and its wall thickness is very thin. Thus, when applying double-layer gas-assisted extrusion technology to process a micro-tube, it is necessary to find the suitable inlet gas pressure and a method for forming a stable double gas layer. In this study, a double-layer gas-assisted extrusion experiment is conducted and combined with a numerical simulation made by POLYFLOW to analyze the effect of inlet gas pressure on micro-tube extrusion molding and the rheological properties of the melt under different inlet gas pressures. A method of forming a stable double gas layer is proposed, and its formation mechanism is analyzed. The research shows that when the inlet gas pressure is large, the viscosity on the inner and outer wall surfaces of the melt is very low due to the effects of shear thinning, viscous dissipation, and the compression effect of the melt, so the melt does not easily adhere to the wall surface of the die, and a double gas layer can be formed. When the inlet gas pressure slowly decreases, the effects of shear thinning and viscous dissipation are weakened, but the gas and the melt were constantly displacing each other and reaching a new balanced state and the gas and melt changed rapidly and steadily in the process without sudden changes, so the melt still does not easily adhere to the wall of the die. Thus, in this experiment, we adjusted the inlet gas pressure to 5000 Pa first to ensure that the melt do not adhere to the wall surface and then slowly increased the inlet gas pressure to 10,000 Pa to reduce the viscosity of the melt. Lastly, we slowly decreased the inlet gas pressure to 1000 Pa to form a stable double gas layer. Using this method will not only facilitate the formation of a stable double gas layer, but can also accurately control the diameter of the micro-tube.
Micro-tubes have small diameters and thin wall thicknesses. When using double-layer gas-assisted extrusion (DGAE) technology to process micro-tubes, due to the influence of flow resistance, airflow from the inner gas-assisted layer cannot flow into the atmosphere through the lumen. Over time, it will inflate or even fracture the micro-tubes intermittently and periodically. To solve this problem, a new double-layer micro-tube gas-assisted extrusion die was designed in this study. Its mandrel has an independent airway leading to the lumen of the extrudate, with which the gas flow into the lumen of the extrudate can be regulated by employing forced exhaust. Using the new die, we carried out extrusion experiments and numerical calculations. The results show a significant positive correlation between micro-tube deformation and gas flow rate in the lumen of a micro-tube. Without considering the refrigerant distortion of the microtube, the flow rate of forced exhaust should be set equal to that of the gas from the inner gas-assisted layer flow into the micro-tube lumen. By doing this, the problem of the micro-tube being inflated can be eliminated without causing other problems.
The isothermal viscoelastic finite element method is used to simulate and analyze the process of cable coating extrusion, in which the Navier slip model is adopted. The Phan–Thien–Tanner differential viscoelastic constitutive equation is used to describe the flow characteristics of the polymer melt. The polymer material used for simulation is polypropylene. The extrudate swell, velocity field, pressure field and shear stress field are calculated by finite element method. The influences of the gas-assisted extrusion and traditional extrusion on wall slip of cable coating extrusion are compared. The results indicate that the extrudate swell ratio is the largest under the condition of the complete slip between core wire and melt during traditional extrusion process. The increase of core wire dragging velocity can lead to the increase of slip velocity, the decrease of pressure and the increase of shear stress of melt. Gas-assisted extrusion can eliminate the negative effects caused by the slip of core wire or the increase of core wire dragging velocity. Therefore, gas-assisted extrusion can reduce the energy consumption, improve the cable coating layer quality and increase the production efficiency during extrusion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.