In this paper, a double-side hybrid excitation flux-switching (DSHE-FS) motor employing a double stator structure with special multi-excitations is presented. The high space utilization improves the torque density and power density of DSHE-FS motor. The addition of non-rare-earth permanent magnet material reduces the consumption of rare-earth permanent magnet material. The double-side field windings enable the motor to have more flexible magnetic modulation properties. To investigate the principle of motor operation and flux regulation, the equivalent magnetic circuit method is employed. In order to achieve higher operation performances of the motor in different driving modes, the multi-objective optimization with coupled multi-physical field calculation is carried out. The multiphysical comprehensive sensitivity function is defined which couples the electromagnetic performance optimization objective and mechanical performance objective. Then multi-objective genetic algorithm (MOGA) method was used to find a feasible solution set. Response surface (RS) method and parameter scan method are used to further determine the five important dimensions. The electromagnetic characteristics of optimized DSHE-FS motor are evaluated and compared in detail. Moreover, the mechanical analysis is conducted for the cupped rotor of DSHE-FS motor to validate the operation security. Theoretical analysis and simulation results verify the rationality of the DSHE-FS motor and the proposed optimization design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.