Increased hemichannel opening induced by oxygen glucose deprivation (OGD) was reported in the hippocampal pyramidal neuron. It was suggested that the pannexin1 hemichannel opening could mediate ionic flux dysregulation, anoxic depolarization, and energy-depleting efflux of glucose and ATP for ischemic neurons. However, the regulatory mechanisms of pannexin1 hemichannel opening have been poorly understood. Here we showed that excessive generation of nitric oxide (NO) during ischemia could induce the calcein leakage from neurons, which was markedly reduced by NO synthase inhibitor. The calcein leakage from neurons during OGD was also attenuated by the application of N-ethylmaleimide (NEM), an SH-alkylating agent, and dithiothreitol (DTT), a reducer of oxidized sulfhydryl groups. However, the soluble guanylyl cyclase (sGC) inhibitor had a minor effect on the calcein leakage during OGD. Furthermore, the elevated intracellular but not extracellular levels of glutathione could also inhibit the calcein leakage during OGD. Similar results were observed in metabolic inhibition (MI), which is another ischemic-like condition. Finally, immunocytochemical and immunoblotting analysis revealed that, after 1 hr of OGD stimulation, the distribution and expression of pannexin1 showed no significant difference compared with control. However, the pannexin1 mRNA expression was elevated after 1 hr of OGD and a sustained increase was maintained during reperfusion. These results implied that the reactive oxygen species (ROS), especially NO, might be involved in the enhanced pannexin1 hemichannel opening and that the S-nitrosylation but not the NO/cGMP pathway played a more important role in this event.
The cytoprotective effects of various solvent extracts of Artocarpus altilis (Parkinson) Fosberg were evaluated. The cytoprotective effects were determined in human U937 cells incubated with oxidized LDL (OxLDL) using the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate (WST-1) assay. The results demonstrated that the ethyl acetate extract showed cytoprotective activities. To identify the main cytoprotective components, a bioassay guided isolation of the ethyl acetate extract afforded b-sitosterol (1) and six flavonoids (2-7). Their chemical structures were established on the basis of spectroscopic evidence and comparison with literature data. Of these compounds, compound 6 was obtained from A. altilis for the first time. The cytoprotective effect offers good prospects for the medicinal applications of A. altilis.
Adhesion of leukocytes to endothelial cells in inflammation processes leads to changes of endothelial cell-substrate adhesiveness, and understanding of such changes will provide us with important information of inflammation processes. In this study, we used a noninvasive biosensor system referred to as real-time cell electronic sensor (RT-CES) system to monitor the changes in endothelial cell-substrate adhesiveness induced by human monoblastic cell line U937 cell adhesion in a dynamic and quantitative manner. This assay, which is based on cell-substrate impedance readout, is able to monitor transient changes in cell-substrate adhesiveness as a result of U937 cell adhesion. The U937 cell adhesion to endothelial cells was induced by lipopolysaccharide (LPS) in a dose-dependent manner. Although the number of adherent U937 cells to the endothelial cells was verified by a standard assay, the adhesiveness of endothelial cells after addition of U937 cells was monitored by the RT-CES system. Furthermore, focal adhesion kinase protein decrease and F-actin rearrangement in endothelial cells were observed after addition of U937 cells. Our results indicated that the adhesion of U937 cells to LPS-treated endothelial cells reduced the cell adhesiveness to the substrate, and such reduction might facilitate infiltration of leukocytes.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.