The polyanion sodium vanadium phosphate Na3V2(PO4)3 (NVP) belongs to the sodium superionic conductors (NASICON) material. Its NASICON structural backbone forms a stable sodium accommodation site, and the open three-dimensional ion transport channel is conducive to the rapid intercalation/deintercalation of Na ions. As a cathode material for batteries, Na3V2(PO4)3 has an extremely high specific capacity, voltage plateau, and cycle stability, meeting the requirements of low cost and high safety. It is a large-scale energy storage material with ideal potential and has received extensive attention. However, the low electronic conductivity of Na3V2(PO4)3 material hinders its further application. Based on the current demand for large-scale application of sodium-ion batteries, this paper re-examines the effect of existing research progress on promoting practical applications and the problems that need to be solved in the future from the perspective of raw material cost system and process complexity. The paper first introduces the structural characteristics of Na3V2(PO4)3 material and the mechanism of sodium-ion intercalation/deintercalation. Then it introduces the synthesis methods, such as the sol–gel method, hydrothermal method, and solid-phase reaction method. In addition, it summarizes the modification studies of Na3V2(PO4)3, including carbon coating, ion doping and, morphology control, design of composite materials and structures based on Na3V2(PO4)3. Finally, it discusses the possible future development of Na3V2(PO4)3.
Nickel-rich layered oxides are promising cathodes in commercial materials for lithium-ion batteries. However, the increase of the nickel content leads to the decay of cyclic performance and thermal stability. Herein, in situ surfacefluorinated W-doping LiNi 0.90 Co 0.05 Mn 0.05 O 2 cathodes enhance integral lithium-ion migration (transfer in bulk and diffusion in the interface) kinetics by synergistically solving the problems of bulk and interface structural degradation. Owing to the introduction of tungsten, the growth of primary particles is regulated toward the (003) crystal plane and with the acicular structure, which further stabilizes the bulk structure during cycling. Moreover, the LiF coating layer on the cathode/electrolyte interface physically isolates the attack of the electrolyte on the surface cathodes and accelerates the lithium-ion diffusion rate, ultimately ameliorating the interfacial dynamics and structural stability. Dual-modified LiNi 0.90 Co 0.05 Mn 0.05 O 2 exhibits superior electrochemical properties, especially more remarkable cyclic retention (88.16% vs 70.44%) after 100 cycles at 1 C and more outstanding high current rate properties (173.31 mAh•g −1 vs 135.97 mAh•g −1 ) at 5 C than the pristine one. This work emphasizes the probability of an integrated optimization strategy for Ni-rich materials, which provides an innovative idea for ameliorating (bulk and interfacial) structure degradation and promoting the diffusion of lithium ions during cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.