This study aimed at development of drug loaded nanoparticles which could bind to hydroxyapatite (HA) to construct drug or growth factor releasing bone graft substitutes. To this end, the terminal hydroxyl group of a nonionic surfactant Brij 78 (polyoxyethylene (20) stearyl ether) was first modified with pamidronate (Pa). Using Pa-Brij 78 as both a surfactant and an affinity ligand to HA, three different Pa surface functionalized nanoparticles were prepared, named as solid lipid nanoparticles (Pa-SNPs), nanoemulsions (Pa-NEMs), and PLGA nanoparticles (Pa-PNPs). A model drug curcumin was successfully encapsulated in the three nanoparticles. The sizes of Pa-NEM and Pa-PNP were around 150 nm and the size of Pa-SNP was around 90 nm with polydispersity indexes (PDIs) less than 0.20. Drug encapsulation efficiencies of the three nanoparticles were all greater than 85%. Furthermore, the order of binding affinity of the nanoparticles to HA wasPa-PNP>Pa-NEM=Pa-SNP. After lyophilization, the sizes of the three nanoparticles were increased about 0.5–2.0-fold but their binding affinities to HA were almost the same as the fresh prepared nanoparticles. In conclusion, a Pa-modified Brij 78 was synthesized and used for fabrication of a series of drug loaded nanoparticles to construct drug-eluting HA-based bone graft substitutes.
Abstract. It has been observed that polymorphonuclear neutrophils (PMN) increase in number and function during obstructive jaundice (OJ). However, the precise mechanisms underlying PMN apoptosis during OJ remain poorly understood. The aim of the present study was to investigate the modulation of cytochrome c (Cytc) on the mitochondrial signaling pathway in bile duct-ligated (BDL) rats and the effect on PMN apoptosis following the intravenous administration of Cytc. Rats were randomly divided into four groups: A control group, a sham group, a BDL group and a BDL + Cytc group (rats with common bile duct ligation as well as Cytc intravenous injection). Blood samples were collected from the inferior vein cava for biochemical analysis and separation of the PMN. PMN apoptosis was evaluated using flow cytometry. The mitochondrial membrane potential (ΔΨm) of PMN was detected by rhodamine-123 staining. The Cytc protein expression levels were examined using western blotting. PMN mitochondria were observed using transmission electron microscopy. The results of the present study revealed that the PMN apoptosis rate in rats decreased gradually from 12 to 72 h following BDL to levels that were significantly lower than those of the control group and the sham group. Compared with the corresponding time point of the BDL group, the BDL + Cytc group showed a significantly increased PMN apoptosis rate. The mean fluorescence intensity (MFI) of ΔΨm decreased from 12 to 72 h following BDL, and was significantly increased compared with the control and sham groups. MFI in the BDL + Cytc group was higher compared with that in the BDL group. Cytc expression levels increased in the mitochondria and decreased in the cytoplasm from the 12 to 72 h in the BDL group, which was significantly different from that in the control and sham groups at the corresponding time points. Compared with the BDL group, Cytc expression levels in the cytoplasm for the BDL + Cytc group tended to gradually and significantly increase. Morphological changes in PMN mitochondria were marginal in BDL rats and marked in the BDL + Cytc group. In the BDL rats, PMN apoptosis was inhibited, a process induced by the mitochondrial apoptotic signaling pathway in which Cytc has an important role. High ΔΨm in the mitochondria and decreased Cytc expression levels in the cytoplasm result in PMN apoptosis inhibition. Intravenous injection of Cytc may help compensate for the lack of Cytc proteins in the cytoplasm, inducing PMN apoptosis following BDL.
Bone is among the most common sites of metastasis in cancer patients, so it is an urgent need to develop drug delivery systems targeting tumor bone metastasis with the feature of controlled release. This study aimed to delivery of thermosensitive liposomal doxorubicin to bone for tumor metastasis treatment. First, Brij78 (polyoxyethylene stearyl ether) was conjugated with Pamidronate (Pa). By incorporating Pa-Brij78 to DPPC/Chol liposomes, we developed Pa surface functionalized liposomes. The Pa-Brij78/DPPC/Chol liposomes (PB-liposomes) exhibited a stronger binding affinity to hydroxyapatite (HA), a major component of bone, than Brij78/DPPC/Chol liposomes (B-liposomes). Doxorubicin (Dox) was then encapsulated in PB-liposomes and the results demonstrated complete release of Dox from PB-liposomes or the complex of HA/PB-liposomes within 10 min at 42 °C. Next, human lung cancer A549 cells were treated with the thermosensitive complex of HA/PB-liposomes/Dox to mimic tumor bone metastasis treatment through bone targeted delivery of therapeutic agents. Pre-incubation of HA/PB-liposomes/Dox with mild heat at 42 °C induced subsequent higher cytotoxicity to A549 cells than incubation of the same complex at 37 °C, suggesting more active drug release triggered by heat. In conclusion, we synthesized a novel surfactant Pa-Brij78 and it has the potential to be used for development of a bone targeted thermosensitive liposome formulation for treatment of tumor bone metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.