This paper presents the work of constructing Chinese adult anatomical models and their application in evaluation of radio frequency (RF) electromagnetic field exposures. The original dataset was obtained from photos of the sliced frozen cadavers from the Chinese Visible Human Project. Details of preparing the cadaver for slicing procedures which may influence the anatomical structures are discussed. Segmentation and reconstruction were performed mainly manually by experienced anatomists. The reconstructed models represent the average Chinese in their twenties and thirties. The finest resolution for the models is 1 × 1 × 1 mm(3) with 90 identified tissues/organs for the female and 87 identified tissues/organs for the male. Tiny anatomical structures such as blood vessels with diameters of 1 mm, various glands and nerves were identified. Whole-body-averaged specific absorption rate (WBSAR) from 20 MHz to 5.8 GHz was calculated with the finite-difference time-domain method for different RF exposure configurations. The WBSAR results are consistent with those from other available models. Finally, some details about the anatomical models are discussed.
BACKGROUND AND PURPOSE: The manganese ion is used as an intracellular MR imaging contrast agent to study neuronal function in animal models, but it remains unclear whether manganese-enhanced MR imaging can be similarly useful in humans. Using mangafodipir (Teslascan, a chelated manganese-based contrast agent that is FDA-approved), we evaluated the dynamics of manganese enhancement of the brain and glandular structures in the rostral head and neck in healthy volunteers. MATERIALS AND METHODS: We administered mangafodipir intravenously at a rate of 1 mL/minute for a total dose of 5 mol/kg body weight. Nine healthy adult volunteers (6 men/3 women; median age, 43 years) completed baseline history and physical examination, 3T MR imaging, and blood work. MR imaging also followed mangafodipir administration at various time points from immediate to 7 days, with delayed scans at 1-3 months. RESULTS: The choroid plexus and anterior pituitary gland enhanced within 10 minutes of infusion, with enhancement persisting up to 7 and 30 days, respectively. Exocrine (parotid, submandibular, sublingual, and lacrimal) glands also enhanced avidly as early as 1 hour postadministration, generally resolving by 1 month; 3 volunteers had residual exocrine gland enhancement, which resolved by 2 months in 1 and by 3 months in the other 2. Mangafodipir did not affect clinical parameters, laboratory values, or T1-weighted signal in the basal ganglia. CONCLUSIONS: Manganese ions released from mangafodipir successfully enable noninvasive visualization of intra-and extracranial structures that lie outside the blood-brain barrier without adverse clinical effects, setting the stage for future neuroradiologic investigation in disease. ABBREVIATIONS: FA ϭ flip angle; GRE ϭ gradient recalled-echo; MEMRI ϭ manganese-enhanced MRI
Extremely low frequency (ELF) magnetic field (MF) exposure in electric vehicles (EVs) has raised public concern for human health. There have been many studies evaluating magnetic field values in these vehicles. However, there has been no report on the temporal variation of the magnetic field in the cabin. This is the first study on the long-term monitoring of actual MFs in EVs. In the study, we measured the magnetic flux density (B) in three shared vehicles over a period of two years. The measurements were performed at the front and rear seats during acceleration and constant-speed driving modes. We found that the B amplitudes and the spectral components could be modified by replacing the components and the hubs, while regular checks or maintenance did not influence the B values in the vehicle. This observation highlights the necessity of regularly monitoring ELF MF in EVs, especially after major repairs or accidents, to protect car users from potentially excessive ELF MF exposure. These results should be considered in updates of the measurement standards. The ELF MF effect should also be taken into consideration in relevant epidemiological studies.
ObjectiveC. elegans has been used as a biomonitor for microwave-induced stress. However, the RF (radiofrequency) fields that have been used in previous studies were weak (≤1.8W/kg), and the bio-effects on C. elegans were mostly negative or ambiguous. Therefore, this study used more intense RF fields (SAR = 3W/kg) and longer time course of exposure (60h at 25°C, L1 stage through adult stage) to investigate the biological consequences of 1750 MHz RF fields in wild-type worms.MethodsThe growth rates and lifespans of RF-exposure group and the control group were carefully recorded. RNA samples were collected at L4 (35h) and gravid adult (50h) stages for further high-throughput sequencing, focusing on differences between the RF-exposure and the sham control groups.ResultsThe RF-exposed and sham control groups developed at almost the same rate and had similar longevity curves. In L4 stage worms, 94 up-regulated and 17 down-regulated genes were identified, while 186 up-regulated and 3 down-regulated genes were identified in adult stage worms. GO analysis showed that the differentially expressed genes at 35h were associated with growth, body morphogenesis and collagen and cuticle-based development. Genes that were linked to growth rate and reproductive development were differentially expressed at 50h. Some embryonic and larval development genes in the offspring were also differentially expressed at 50h. Ten genes were differentially expressed at both 35h and 50h, most of which were involved in both embryonic and larval developmental processes. Although prolonged RF fields did not induce significant temperature increase in RF exposure groups, the temperature inside worms during exposure was unknown.ConclusionsNo harmful effects were observed in prolonged exposure to 1750 MHz RF fields at SAR of 3W/kg on development and longevity of C. elegans. Although some differentially expressed genes were found after prolonged RF exposure, these differences were ascribed to oscillating gene expression patterns in L4 and gravid adult worms. It was also difficult to rule out a weak thermal effect caused by prolonged RF exposure inside the worms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.