Both abnormalities of resting-state cerebral blood flow (CBF) and functional connectivity in Wilson’s disease (WD) have been identified by several studies. Whether the coupling of CBF and functional connectivity is imbalanced in WD remains largely unknown. To assess this possibility, 27 patients with WD and 27 sex- and age-matched healthy controls were recruited to acquire functional MRI and arterial spin labeling imaging data. Functional connectivity strength (FCS) and CBF were calculated based on standard gray mask. Compared to healthy controls, the CBF–FCS correlations of patients with WD were significantly decreased in the basal ganglia and the cerebellum and slightly increased in the prefrontal cortex and thalamus. In contrast, decreased CBF of patients with WD occurred predominately in subcortical and cognitive- and emotion-related brain regions, including the basal ganglia, thalamus, insular, and inferior prefrontal cortex, whereas increased CBF occurred primarily in the temporal cortex. The FCS decrease in WD patients was predominately in the basal ganglia and thalamus, and the increase was primarily in the prefrontal cortex. These findings suggest that aberrant neurovascular coupling in the brain may be a possible neuropathological mechanism underlying WD.
The similar shape and texture of colonic polyps and normal mucosal tissues lead to low accuracy of medical image segmentation algorithms. To solve these problems, we proposed a polyp image segmentation algorithm based on deep learning technology, which combines a HarDNet module, attention module, and multi-scale coding module with the U-Net network as the basic framework, including two stages of coding and decoding. In the encoder stage, HarDNet68 is used as the main backbone network to extract features using four null space convolutional pooling pyramids while improving the inference speed and computational efficiency; the attention mechanism module is added to the encoding and decoding network; then the model can learn the global and local feature information of the polyp image, thus having the ability to process information in both spatial and channel dimensions, to solve the problem of information loss in the encoding stage of the network and improving the performance of the segmentation network. Through comparative analysis with other algorithms, we can find that the network of this paper has a certain degree of improvement in segmentation accuracy and operation speed, which can effectively assist physicians in removing abnormal colorectal tissues and thus reduce the probability of polyp cancer, and improve the survival rate and quality of life of patients. Also, it has good generalization ability, which can provide technical support and prevention for colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.