In order to further improve positioning accuracy, this paper proposes an indoor vision/INS integrated mobile robot navigation method using multimodel-based multifrequency Kalman filter. Firstly, to overcome the insufficient accuracy of visual data when a robot turns, a novel multimodel integrated scheme has been investigated for the mobile robots with Mecanum wheels which can make fixed point angled turns. Secondly, a multifrequency Kalman filter has been used to fuse the position information from both the inertial navigation system and the visual navigation system, which overcomes the problem that the filtering period of the integrated navigation system is too long. The proposed multimodel multifrequency Kalman filter gives the root mean square error (RMSE) of 0.0184 m in the direction of east and 0.0977 m in north, respectively. The RMSE of visual navigation system is 0.8925 m in the direction of east and 0.9539 m in north, respectively. Experimental results show that the proposed method is effective.
In order to solve the problems that indoor mobile robots have parking during the traveling process and the Extended Kalman filter (EKF) receives too much influence on parameter selection, this paper proposes an Interacting Multiple Model (IMM)-EKF/Particle Filtering (PF) adaptive algorithm for the tightly inertial navigation system (INS)/Light Detection And Ranging (LiDAR) integrated navigation. The EKF and PF calculate the position of the robot respectively, then the smaller
Mahalanobis
distance-based filter’s output is selected as the initial value of the next iteration, which improves the accuracy of the positioning for the robot. Based on that, the two motion equations of the static and normal motion models are dsigned at the same time. A
Markov
chain for converting the two state of the model, and the weighting filtering result of the filtered is used to provide distance estimates. The real experimental results show that the IMM-EKF/PF adaptive algorithm improves the positioning accuracy of mobile robots in the presence of parking.
In order to achieve high precision localization, this paper presents an integrated localization scheme employs two particle filters (PFs) for fusing the inertial navigation systems (INS)-based and the light detection and ranging (LiDAR)-based data. A novel data fusion model is designed, which considers the robot position error, velocity error, and the orientation error. Meanwhile, two-PFs based data fusion filer is designed. The position errors measured by the two-PFs in real tests is 0.059 m. The experimental results verify the effectiveness of two-PFs method proposed in reducing the mobile robot’s position error compared with the two-EKF method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.