qualitative relighting results on a dataset of hundreds of real-world cellphone portraits. Because our technique can produce a 640 × 640 image in only 160 milliseconds, it may enable interactive user-facing photographic applications in the future.
Self‐reduction behavior of doped activators and zero‐thermal‐quenching luminescence have received much more attention in the exploration of luminescent materials for phosphor‐converted white light‐emitting diodes. Here, a combination of the two properties is demonstrated in a Mn2+ activated red phosphor, NaZn(PO3)3:Mn2+, synthesized by a high temperature solid state reaction in ambient atmosphere, which is free from thermal quenching until 250 °C. By combined first‐principles calculation and experimental investigation, the self‐reduction mechanism from Mn4+ to Mn2+ and the anti‐thermal quenching are clarified. The unique properties originate from the cation vacancy defects and the thermally induced energy transfer from the defect energy levels to the Mn2+ 3d excited state centers. This result will deepen the understanding of the effect of the crystal defect on luminescent materials, as well as inspiring more exploration on defect control to develop novel high thermal stability phosphors for practical application.
Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.