Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34 PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na/K-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Background: The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na + /Isymporter (NIS), SLC26A7, and Na + /K + -ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional Vps34 inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. Methods: Vps34 was inactivated using a Pax8-driven Cre recombinase system. The impact of Vps34 inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by 125 I injection and plasma analysis. Results: Vps34 conditional knockout (Vps34 cKO ) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at *1 month of age. We therefore analyzed thyroid Vps34 cKO at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS + colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 -0.62 lg/dL) and huge thyrotropin plasma levels (19,300 -10,500 mU/L); (iii) impaired 125 I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. Conclusions: We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.