Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide variations and insertions/deletions in exomes of CTCs. These mutations provided information needed for individualized therapy, such as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar CNV patterns in their CTCs. Even more interestingly, patients of smallcell lung cancer have CNV patterns distinctly different from those of ADC patients. Our finding suggests that CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics.cancer diagnostics | personalized therapy A s a genomic disease, cancer involves a series of changes in the genome, starting from primary tumors, via circulating tumor cells (CTCs), to metastases that cause the majority of mortalities (1-3). These genomic alterations include copy number variations (CNVs), single-nucleotide variations (SNVs), and insertions/deletions (INDELs). Regardless of the concentrated efforts in the past decades, the key driving genomic alterations responsible for metastases are still elusive (1).For noninvasive prognosis and diagnosis of cancer, it is desirable to monitor genomic alterations through the circulatory system. Genetic analyses of cell-free DNA fragments in peripheral blood have been reported (4-6) and recently extended to the whole-genome scale (7-9). However, it may be advantageous to analyze CTCs, as they represent intact functional cancer cells circulating in peripheral blood (10). Although previous studies have shown that CTC counting was able to predict progression and overall survival of cancer patients (11,12), genomic analyses of CTCs could provide more pertinent information for personalized therapy (13). However, it is difficult to probe the genomic changes in DNA obtainable from the small number of captured CTCs. To meet this challenge, a single-cell whole-genome amplification (WGA) method, multiple annealing and loopingbased amplification cycles (MALBAC) (14), has been developed to improve the amplification uniformity across the entire genome over previous methods (15,16), allowing precise determination of CNVs and detection of SNVs with a low false-positive rate in a single cell. Here, we present genomic analyses of CTCs from...
Our results suggest that chemotherapy may reduce EGFR mutation frequency in patients with NSCLC, likely the result of a preferential response of subclones with EGFR mutations in tumors with heterogeneous tumor cell populations.
BackgroundAmong advanced non-small cell lung cancer (NSCLC) patients with an acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI), about 50% carry the T790M mutation, but this frequency in EGFR-TKI-naïve patients and dynamic change during therapy remains unclear. This study investigated the quantification and dynamic change of T790M mutation in plasma cell-free DNA (cf-DNA) of advanced NSCLC patients to assess the clinical outcomes of EGFR-TKI therapy.Materials and MethodsWe retrospectively investigated 135 patients with advanced NSCLC who obtained progression-free survival (PFS) after EGFR-TKI for >6 months for their EGFR sensitive mutations and T790M mutation in matched pre- and post-TKI plasma samples, using denaturing high-performance liquid chromatography (DHPLC), amplification refractory mutation system (ARMS), and digital-PCR (D-PCR). Real-time PCR was performed to measure c-MET amplification.ResultsDetection limit of D-PCR in assessing the T790M mutation was approximately 0.03%. D-PCR identified higher frequency of T790M than ARMS in pre-TKI (31.3% vs. 5.5%) and post-TKI (43.0% vs. 25.2%) plasma samples. Patients with pre-TKI T790M showed inferior PFS (8.9 vs. 12.1 months, p = 0.007) and overall survival (OS, 19.3 vs. 31.9 months, p = 0.001) compared with those without T790M. In patients harboring EGFR sensitive mutation, high quantities of pre-TKI T790M predicted poorer PFS (p = 0.001) on EGFR-TKI than low ones. Moreover, patients who experienced increased quantity of T790M during EGFR-TKI treatment showed superior PFS and OS compared with those with decreased changes (p = 0.044 and p = 0.015, respectively).ConclusionQualitative and quantitative T790M in plasma cf-DNA by D-PCR provided a non-invasive and sensitive assay to predict EGFR-TKI prognosis.
Osteosarcoma is the most common primary bone malignancy, and the lung is the most frequent site of metastasis. The limited understanding of the tumoral heterogeneity and evolutionary process of genomic alterations in pulmonary metastatic osteosarcoma impedes development of novel therapeutic strategies. Here we systematically illustrate the genomic disparities between primary tumors and corresponding pulmonary metastatic tumors by multiregional whole-exome and whole-genome sequencing in 86 tumor regions from 10 patients with osteosarcoma. Metastatic tumors exhibited a significantly higher mutational burden and genomic instability compared with primary tumors, possibly due to accumulation of mutations caused by a greater number of alterations in DNA damage response genes in metastatic tumors. Integrated analysis of the architecture and relationships of subclones revealed a dynamic mutational process and diverse dissemination patterns of osteosarcoma during pulmonary metastasis (6/10 with linear and 4/10 with parallel evolution-ary patterns). All patients demonstrated more significant intertumoral rather than intratumoral heterogeneity between primary tumors and metastatic tumors. Mutated genes were enriched in the PI3K-Akt pathway at both the early and late stages of tumor evolution and in the MAPK pathway at the metastatic stage. Conversely, metastatic tumors showed improved immunogenicity, including higher neoantigen load, elevated PD-L1 expression, and tumor-infiltrating lymphocytes than the corresponding primary tumors. Our study is the first to report the dynamic evolutionary process and temporospatial tumor heterogeneity of pulmonary metastatic osteosarcoma, providing new insights for diagnosis and potential therapeutic strategies for pulmonary metastasis.Significance: High-throughput sequencing of primary and metastatic osteosarcoma provides new insights into the diagnosis of and potential clinical therapeutic strategies for pulmonary metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.