The turn domain resampling (TDR) method is proposed in the paper on the basis of the existing angle domain resampling for solving the problem of non-fixed fault frequency under variable working conditions. TDR can select the appropriate sampling order according to the influence of frequency conversion, which avoided the error caused by the spline interpolation method. It can provide accurate parameters for the subsequent calculation of the equivalent frequency order. Variable multi-scale morphological filtering (VMSMF) method is proposed for the purpose of further reducing the interference of noise in resampling signal to feature extraction. VMSMF adaptively selects structural elements according to the parameter change of impact signal to make its scale more targeted. It only needs to calculate once using the optimal structural unit for a particular impact, and the filtering accuracy and operating efficiency have been greatly improved. The main steps of this article are as follows. First, the TDR is used to resample the original signal as to get the resampling signal which is still submerged by the strong noise. In the second step, VMSMF is used to filter the resampling signal to obtain the signal with less noise interference. Finally, the fault characteristics of the filtering signal was extracted and compared with the possible fault frequency calculated by the sampling parameters provided by resampling, so as to determine the fault type of the planetary gearbox. By analyzing the simulation signal and the experimental signal respectively, this method can find out the corresponding fault characteristics effectively.
The gear is one of the important parts of a rotary gearbox. Once catastrophic gear failure occurs, it will cause a great threat to production and life safety. The crack is an important failure factor causing changes in time-varying stiffness and vibration response. It is difficult to effectively identify the vibration response and meshing stiffness changes when there is a fine crack in the gear. Therefore, it is of great importance to improve the accuracy of meshing stiffness calculation and dynamic simulations under micro-cracks. Investigations of meshing stiffness and the vibration response of a gearbox is almost all about fixed gear shape parameters. However, the actual production process of gear system needs to change gear shape parameters. In this paper, the meshing stiffness and vibration response of the dynamic simulation signals of gear teeth with different crack depths at different tooth shape parameters (the pressure angle, the modulus, and the tooth number) were calculated, respectively. The influence of cracks on the vibration response was investigated by the fault detection indicators, the Root Mean Square (RMS), the kurtosis, and the crest factor. The result shows that when the pressure angle and modulus change, the vibration response changes erratically. However, when the tooth numbers change, the vibration response changes regularly. The results could be a guide for choosing gears in different shape parameters when system stability is the aim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.