Temperature is a fundamental parameter for all forms of lives. Natural evolution has resulted in organisms which have excellent thermoregulation capabilities in extreme climates. Bioinspired materials that mimic biological solution for thermoregulation have proven promising for passive radiative cooling. However, scalable production of artificial photonic radiators with complex structures, outstanding properties, high throughput, and low cost is still challenging. Herein, we design and demonstrate biologically inspired photonic materials for passive radiative cooling, after discovery of longicorn beetles’ excellent thermoregulatory function with their dual-scale fluffs. The natural fluffs exhibit a finely structured triangular cross-section with two thermoregulatory effects which effectively reflects sunlight and emits thermal radiation, thereby decreasing the beetles’ body temperature. Inspired by the finding, a photonic film consisting of a micropyramid-arrayed polymer matrix with random ceramic particles is fabricated with high throughput. The film reflects ∼95% of solar irradiance and exhibits an infrared emissivity >0.96. The effective cooling power is found to be ∼90.8 W⋅m−2and a temperature decrease of up to 5.1 °C is recorded under direct sunlight. Additionally, the film exhibits hydrophobicity, superior flexibility, and strong mechanical strength, which is promising for thermal management in various electronic devices and wearable products. Our work paves the way for designing and fabrication of high-performance thermal regulation materials.
Artificial inorganic leafs are developed by organizing light harvesting, photoinduced charge separation, and catalysis modules (Pt/N‐TiO2) into leaf‐shaped hierarchical structures using natural leaves as biotemplates (see figure). The enhanced light‐harvesting and photocatalytic water‐splitting activities stem from the reproduction of the leafs' complex structures and self‐doping of nitrogen during synthesis. The research may represent an important first step toward the design of novel artificial solar‐energy transduction systems based on natural concepts, particularly on mimicking the structural design.
Porous carbon/Co nanocomposites were fabricated by a sol-gel method. The electromagnetic parameters were measured in the 2–18GHz range. Compared with porous carbon composite, porous carbon/Co nanocomposite has larger dielectric loss due to the enhanced interfacial polarization relaxation loss and Ohmic loss. The maximum reflection loss of the porous C(Co) nanocomposite can reach 40dB at 4.2GHz with 5mm in thickness and the primary microwave absorptive mechanism is ascribed to the dielectric loss. The effect of porous structure on microwave absorption property of the carbon/Co nanocomposite was also discussed.
The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.