Ginseng has been used worldwide as traditional medicine for thousands of years, and ginsenosides have been proved to be the main active components for their various pharmacological activities. Based on their structures, ginsenosides can be divided into ginseng diol-type A and ginseng triol-type B with different pharmacological effects. In this study, six ginsenosides, namely ginsenoside Rb1, Rh2, Rg3, Rg5 as diol-type ginseng saponins, and Rg1 and Re as triol-type ginseng saponins, which were reported to be effective for ischemia-reperfusion (I/R) treatment, were chosen to compare their protective effects on cerebral I/R injury, and their mechanisms were studied by in vitro and in vivo experiments. It was found that all ginsenosides could reduce reactive oxygen species (ROS), inhibit apoptosis and increase mitochondrial membrane potential in cobalt chloride-induced (CoCl2-induced) PC12 cells injury model, and they could reduce cerebral infarction volume, brain neurological dysfunction of I/R rats in vivo. The results of immunohistochemistry and western blot showed that the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), silencing information regulator (SIRT1) and nuclear transcription factor P65 (NF-κB) in hippocampal CA1 region of some ginsenoside groups were also reduced. In general, the effect on cerebral ischemia of Rb1 and Rg3 was significantly improved compared with the control group, and was the strongest among all the ginsenosides. The effect on SIRT1 activation of ginsenoside Rb1 and the inhibition effect of TLR4/MyD88 protein expression of ginsenoside Rb1 and Rg3 were significantly stronger than that of other groups. The results indicated that ginsenoside Rg1, Rb1, Rh2, Rg3, Rg5 and Re were effective in protecting the brain against ischemic injury, and ginsenoside Rb1 and Rg3 have the strongest therapeutic activities in all the tested ginsenosides. Their neuroprotective mechanism is associated with TLR4/MyD88 and SIRT1 activation signaling pathways, and they can reduce cerebral ischemic injury by inhibiting NF-κB transcriptional activity and the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).
Epithelial-mesenchymal transition (EMT) is associated with tumor invasion and metastasis, and offers insight into novel strategies for cancer treatment. Sotetsuflavone was isolated from Cycas revolute, which has excellent anticancer activity in the early stages. The present study aims to evaluate the anti-metastatic potential of sotetsuflavone in vitro. Our data demonstrated that sotetsuflavone inhibits metastasis of A549 cells, and EMT. This inhibition was reflected in the upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Snail. Mechanistically, our study demonstrated that HIF-1α played an important role in the anti-metastatic effect of sotetsuflavone in non-small-cell lung cancer A549 cells. Sotetsuflavone not only mediated VEGF expression but also downregulated VEGF and upregulated angiostatin, and simultaneously affected the expression of MMPs and decreased MMP-9 and MMP-13 expression. More importantly, HIF-1α expression may be regulated by the inhibition of PI3K/AKT and TNF-α/NF-κB pathways. These results suggest that sotetsuflavone can reverse EMT, thereby inhibiting the migration and invasion of A549 cells. This process may be associated with both PI3K/AKT and TNF-α/NF-κB pathways, and sotetsuflavone may be efficacious in the treatment of non-small-cell lung cancer.
Nitidine chloride (NC) is a natural bioactive phytochemical alkaloid that has displayed anticancer activity in various types of cancer. However, no evidence has been reported for the direct effect of NC on CRC cell proliferation and apoptosis, and the underling mechanisms to be fully elucidated. The present study aimed to investigate the influence of NC on the apoptosis and proliferation of CRC cells. The viability and proliferation of CRC cells was measured by MTT assay and a [3H] thymidine uptake assay. Apoptosis was measured using a flow cytometric apoptosis assay and TUNEL staining. The expression levels of apoptotic-regulated proteins in addition to extracellular signal-regulated kinase (ERK) were measured by western blot analysis following stimulation with NC. The results indicated that NC inhibited the proliferation of HCT116 cells in a dose- and time-dependent manner. Additionally, apoptotic induction by NC treatment was confirmed. Furthermore, NC was demonstrated to significantly upregulate the expression of Bax, p53, cleaved caspase-3 and -9 and downregulate the expression of Bcl-2. Treatment with NC reduced the phosphorylation of ERK and by using an ERK inhibitor, U0126, the roles of NC in apoptotic induction and the inhibition of proliferation were further demonstrated. These results demonstrated that NC inhibited the proliferation and induced the apoptosis of CRC cells via the ERK signaling pathway.
Non-small cell lung cancer (NSCLC) is a globally scaled disease with a high incidence and high associated mortality rate. Autophagy is one of the important physiological activities that helps to control cell survival, influences the dynamics of cell death, and which plays a crucial role in the pathophysiology of NSCLC. Sotetsuflavone is a naturally derived and occurring flavonoid, and previous studies have demonstrated that sotetsuflavone possesses potential anti-cancer activities. However, whether or not sotetsuflavone induces autophagy, as well as has effects and influences cell death in NSCLC cells remains unclear. Thus, in our study, we examined and elucidated the roles and underlying mechanisms of sotetsuflavone upon the dynamics of autophagy in NSCLC in vivo and in vitro. The results indicated that sotetsuflavone was able to inhibit proliferation, migration, and invasion of NSCLC cells. Mechanistically, sotetsuflavone was able to induce apoptosis by increasing the levels of expression of cytochrome C, cleaved-caspase 3, cleaved-caspase 9, and Bax, and contrastingly decreased levels of expression of Bcl-2. In addition, we also found that decreased levels of expression of cyclin D1 and CDK4 caused arrest of the G0/G1 phases of the cell cycle. Furthermore, we also found that sotetsuflavone could induce autophagy which in turn can play a cytoprotective effect on apoptosis in NSCLC. Sotetsuflavone-induced autophagy appeared related to the blocking of the PI3K/Akt/ mTOR pathway. Our in vivo study demonstrated that sotetsuflavone significantly inhibited the growth of xenograft model inoculated A549 tumor with high a degree of safety. Taken together, these findings suggest that sotetsuflavone induces autophagy in NSCLC cells through its effects upon blocking of the PI3K/Akt/mTOR signaling pathways. Our study may provide a theoretical basis for future clinical applications of sotetsuflavone and its use as a chemotherapeutic agent for treatment of NSCLC.
BackgroundSotetsuflavone is isolated from Cycas revoluta Thunb., which has biological activity against tumors. However, the anti-proliferative effects of sotetsuflavone on A549 cells and its mechanism are not fully elucidated.MethodsThis study investigated the mechanisms of growth inhibition, cell cycle arrest and apoptosis in non-small cell lung cancer A549 cells induced by sotetsuflavone and evaluated whether sotetsuflavone can be safely utilized by humans as therapeutic agent.ResultsWe found that sotetsuflavone had significant antiproliferative activity against A549 cells. At the same time, the reactive oxygen species (ROS) content increased while the mitochondrial membrane potential and the ratio of Bcl-2/Bax decreased. Cleaved caspase-3, cleaved caspase-9, cytochrome C and Bax expression increased, and Cyclin D1, CDK4, cleaved caspase-8 and Bcl-2 expression decreased. Interestingly, we demonstrated that sotetsuflavone could effectively inhibit the G0/G1 cycle progression, and then induce the endogenous apoptosis pathway. Our results show that sotetsuflavone could inhibit the growth of A549 cells by up-regulating intracellular ROS levels and causing the mitochondrial membrane potential to collapse, inducing G0/G1 phase arrest and endogenous apoptosis.ConclusionsIn short, we confirm that sotetsuflavone had an inhibitory effect on A549 cells and discovered that it causes apoptosis of A549 lung cancer cells. Sotetsuflavone may be used as a novel candidate for anti-tumor therapy in patients with lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.