Preventing and suppressing forest fires is one of the main tasks of forestry agencies to reduce resource loss and requires a thorough understanding of the importance of factors affecting their occurrence. This study was carried out in forest plantations on Maoer Mountain in order to develop models for predicting the moisture content of dead fine fuel using meteorological and soil variables. Models by Nelson (Can J For Res 14:597–600, 1984) and Van Wagner and Pickett (Can For Service 33, 1985) describing the equilibrium moisture content as a function of relative humidity and temperature were evaluated. A random forest and generalized additive models were built to select the most important meteorological variables affecting fuel moisture content. Nelson's (Can J For Res 14:597–600, 1984) model was accurate for Pinus koraiensis, Pinus sylvestris, Larix gmelinii and mixed Larix gmelinii—Ulmus propinqua fuels. The random forest model showed that temperature and relative humidity were the most important factors affecting fuel moisture content. The generalized additive regression model showed that temperature, relative humidity and rain were the main drivers affecting fuel moisture content. In addition to the combined effects of temperature, rainfall and relative humidity, solar radiation or wind speed were also significant on some sites. In P. koraiensis and P. sylvestris plantations, where soil parameters were measured, rain, soil moisture and temperature were the main factors of fuel moisture content. The accuracies of the random forest model and generalized additive model were similar, however, the random forest model was more accurate but underestimated the effect of rain on fuel moisture.
Despite the high frequency of wildfire disturbances in boreal forests in China, the effects of wildfires on soil respiration are not yet well understood. We examined the effects of fire severity on the soil respiration rate (Rs) and its component change in a Dahurian Larch (Larix gmelinii) in Northeast China. The results showed that Rs decreased with fire burning severity. Compared with the control plots, Rs in the low burning severity plots decreased by 19%, while it decreased by 28% in the high burning severity plots. The Rs decrease was mainly due to a decreased autotrophic respiration rate (Ra). The temperature sensitivity (Q
10) of Rs increased after the low severity fire disturbances, but it decreased after the high severity fire disturbance. The Rs were triggered by the soil temperature, which may explain most of the Rs variability in this area. Our study, for the first time, provides the data-based foundation to demonstrate the importance of assessing CO2 fluxes considering both fire severity and environmental factors post-fire in boreal forests of China.
In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%–5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%–79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze–thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.