Abstract-Unit commitment, one of the most critical tasks in electric power system operations, faces new challenges as the supply and demand uncertainty increases dramatically due to the integration of variable generation resources such as wind power and price responsive demand. To meet these challenges, we propose a two-stage adaptive robust unit commitment model for the security constrained unit commitment problem in the presence of nodal net injection uncertainty. Compared to the conventional stochastic programming approach, the proposed model is more practical in that it only requires a deterministic uncertainty set, rather than a hard-to-obtain probability distribution on the uncertain data. The unit commitment solutions of the proposed model are robust against all possible realizations of the modeled uncertainty. We develop a practical solution methodology based on a combination of Benders decomposition type algorithm and the outer approximation technique. We present an extensive numerical study on the real-world large scale power system operated by the ISO New England. Computational results demonstrate the economic and operational advantages of our model over the traditional reserve adjustment approach.Index Terms-Bilevel mixed-integer optimization, power system control and reliability, robust and adaptive optimization, security constrained unit commitment.
The growing uncertainty associated with the increasing penetration of wind and solar power generation has presented new challenges to the operation of large-scale electric power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the most critical daily operational problem of power systems, namely the unit commitment (UC) problem, in the situation where nodal net electricity loads are uncertain. The proposed multistage robust UC model takes into account the time causality of the hourly unfolding of uncertainty in the power system operation process, which we show to be relevant when ramping capacities are limited and net loads present significant variability. To deal with large-scale systems, we explore the idea of simplified affine policies and develop a solution method based on constraint generation. Extensive computational experiments on the IEEE 118-bus test case and a real-world power system with 2736 buses demonstrate that the proposed algorithm is effective in handling large-scale power systems and that the proposed multistage robust UC model can significantly outperform the deterministic UC and existing two-stage robust UC models in both operational cost and system reliability.
Abstract-When participating in electricity markets, owners of battery energy storage systems must bid in such a way that their revenues will at least cover their true cost of operation. Since cycle aging of battery cells represents a substantial part of this operating cost, the cost of battery degradation must be factored in these bids. However, existing models of battery degradation either do not fit market clearing software or do not reflect the actual battery aging mechanism. In this paper we model battery cycle aging using a piecewise linear cost function, an approach that provides a close approximation of the cycle aging mechanism of electrochemical batteries and can be incorporated easily into existing market dispatch programs. By defining the marginal aging cost of each battery cycle, we can assess the actual operating profitability of batteries. A case study demonstrates the effectiveness of the proposed model in maximizing the operating profit of a battery energy storage system taking part in the ISO New England energy and reserve markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.