Estimation of Shannon and Rényi entropies of unknown discrete distributions is a fundamental problem in statistical property testing and an active research topic in both theoretical computer science and information theory. Tight bounds on the number of samples to estimate these entropies have been established in the classical setting, while little is known about their quantum counterparts. In this paper, we give the first quantum algorithms for estimating α-Rényi entropies (Shannon entropy being 1-Renyi entropy). In particular, we demonstrate a quadratic quantum speedup for Shannon entropy estimation and a generic quantum speedup for α-Rényi entropy estimation for all α ≥ 0, including a tight bound for the collision-entropy (2-Rényi entropy). We also provide quantum upper bounds for extreme cases such as the Hartley entropy (i.e., the logarithm of the support size of a distribution, corresponding to α = 0) and the min-entropy case (i.e., α = +∞), as well as the Kullback-Leibler divergence between two distributions. Moreover, we complement our results with quantum lower bounds on α-Rényi entropy estimation for all α ≥ 0.Our approach is inspired by the pioneering work of Bravyi, Harrow, and Hassidim (BHH) [13] on quantum algorithms for distributional property testing, however, with many new technical ingredients. For Shannon entropy and 0-Rényi entropy estimation, we improve the performance of the BHH framework, especially its error dependence, using Montanaro's approach to estimating the expected output value of a quantum subroutine with bounded variance [41] and giving a fine-tuned error analysis. For general α-Rényi entropy estimation, we further develop a procedure that recursively approximates α-Rényi entropy for a sequence of αs, which is in spirit similar to a cooling schedule in simulated annealing. For special cases such as integer α ≥ 2 and α = +∞ (i.e., the min-entropy), we reduce the entropy estimation problem to the α-distinctness and the log n -distinctness problems, respectively. We exploit various techniques to obtain our lower bounds for different ranges of α, including reductions to (variants of) existing lower bounds in quantum query complexity as well as the polynomial method inspired by the celebrated quantum lower bound for the collision problem.
We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f:Rn→R, our quantum algorithm outputs an ϵ-approximate second-order stationary point using O~(log2(n)/ϵ1.75) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O~(log6(n)/ϵ1.75) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of logn and matches its complexity in terms of 1/ϵ. Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with logn factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.