To establish and consummate the electric power network, the construction and investment scale of power substation projects is expanding every year. As a capital-technology-intensive project, it has high requirements for power substation project management. Accurate cost forecasting can help to reduce the project cost, improve the investment efficiency, and optimize project management. However, affected by many factors, the construction cost of a power substation project usually presents strong nonlinearity and uncertainty, which make it difficult to accurately forecast the cost. This paper presents a new hybrid substation project cost forecasting method called PCA-PSO-SVM model, which is a support vector machine (SVM) model optimized by a particle swarm optimization (PSO) algorithm with principal component analysis (PCA). In this intelligent prediction model, the PCA method is introduced to reduce the data dimension. Furthermore, the PSO algorithm is used to optimize the model parameters. In the example, 65 sets of substation construction data are input into PCA-PSO-SVM model for construction cost prediction, and the prediction results are compared with other prediction methods to verify the forecasting accuracy. The results show that the MAPE and RMSE of the PCA-PSO-SVM model is 6.21% and 3.62, respectively. And, the prediction accuracy of this model is better than that of other models, which can provide a reliable basis for investment decision-making of substation projects.
Abstract. Chinese government is promoting the electric vehicles to replace the role of cars ran on patrol. It can be imagined that the construction and operation of charging station will have an insignificant impact on the development of electric vehicle industry. This paper based on connotation and characteristics of electricity charging station, described the electric charging facility development policy in China, promoted three basic construction and operation mode and the advantages and disadvantages are analyzed separately, finally obtained the optimized mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.