Organic water-gated transistors (OWGTs) have emerged as promising sensing architectures for biomedical applications and environmental monitoring due to their ability of in-situ detection of biological substances with high sensitivity and low operation voltage, as well as compatibility with various read-out circuits. Tremendous progress has been made in the development of p-type OWGTs. However, achieving stable n-type operation in OWGTs due to the presence of solvated oxygen in water is still challenging. Here, we report an ambipolar OWGT based on a bulk heterojunction active layer, which exhibits a stable hole and electron transport when exposed to aqueous environment. The device can be used as a photodetector both in the hole and electron accumulation regions to yield a maximum responsivity of 0.87 A W−1. More importantly, the device exhibited stable static and dynamic photodetection even when operated in the n-type mode. These findings bring possibilities for the device to be adopted for future biosensing platforms, which are fully compatible with low-cost and low-power organic complementary circuits.
Comprehensive Summary
A new class of near‐infrared (NIR) fluorescent organoboron AIEgens was successfully developed for latent fingerprints (LFPs) imaging. They exhibit real‐time and in situ high‐resolution imaging performance at 1—3 levels of LFPs by spraying method. In addition, we systematically elucidate the fingerprint imaging mechanism of these AIEgens. Significantly, the excellent level 3 structural imaging capabilities enable the application of them for analyzing incomplete LFPs and identifying individuals in different scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.