Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, and strains that possess the cag secretion system, which translocates the bacterial effector CagA into host cells, augment cancer risk. H. pylori strains that express the vacuolating cytotoxin or the outer membrane protein OipA are similarly associated with severe pathologic outcomes. We previously reported that an in vivo adapted H. pylori strain, 7.13, induces gastric adenocarcinoma in rodent models of gastritis. In the current study, we used carcinogenic strain 7.13 as a prototype to define the role of virulence constituents in H. pylori-mediated carcinogenesis. Mongolian gerbils were infected with wild-type strain 7.13 or cagA À , vacA À , or oipA À mutants for 12 to 52 weeks. All infected gerbils developed gastritis; however, inflammation was significantly attenuated in animals infected with the cagA À but not the vacA À or oipA À strains. Gastric dysplasia and cancer developed in >50% of gerbils infected with either the wild-type or vacA À strain but in none of the animals infected with the cagA À strain. Inactivation of oipA decreased B-catenin nuclear localization in vitro and reduced the incidence of cancer in gerbils. OipA expression was detected significantly more frequently among H. pylori strains isolated from human subjects with gastric cancer precursor lesions versus persons with gastritis alone. These results indicate that loss of CagA prevents the development of cancer in this model. Inactivation of oipA attenuates B-catenin nuclear translocation and also decreases the incidence of carcinoma. In addition to defining factors that mediate H. pylori-induced cancer, these results provide insight into mechanisms that may regulate the development of other malignancies arising within the context of inflammatory states. [Cancer Res 2008;68(2):379-87]
Background & Aims Infection with the gastric mucosal pathogen H. pylori is the strongest identified risk factor for distal gastric cancer. These bacteria colonize a significant part of the world’s population. We investigated the molecular mechanisms of p53 regulation in H. pylori-infected cells. Methods Mongolian gerbils were challenged with H. pylori and their gastric tissues were analyzed by immunohistochemistry and immunoblotting with p53 antibodies. Gastric epithelial cells were co-cultured with H. pylori and the regulation of p53 was assessed by real-time PCR, immunoblotting, immunofluorescence, and cell survival assays. shRNA and dominant-negative mutants were used to inhibit activities of HDM2 and AKT. Results We found that in addition to previously reported up-regulation of p53, H. pylori can also negatively regulate p53 by increasing ubiquitination and proteasomal degradation via activation of the serine/threonine kinase AKT, which phosphorylates and activates the ubiquitin ligase HDM2. These effects were mediated by the bacterial virulence factor, CagA; ectopic expression of CagA in gastric epithelial cells increased phosphorylation of HDM2 along with the ubiquitination and proteasomal degradation of p53. The decrease in p53 levels increased survival of gastric epithelial cells that had sustained DNA damage. Conclusion H. pylori is able to inhibit the tumor suppressor p53. H. pylori activates AKT, resulting in phosphorylation and activation of HDM2 and subsequent degradation of p53 in gastric epithelial cells. H. pylori-induced dysregulation of p53 is a potential mechanism by which the microorganism increases the risk of gastric cancer in infected individuals.
Engineered nanoparticle for controlled superoxide flux potentiates antibiotics in MDR clinical isolates.
Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world’s population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared to the low risk region on the Pacific coast. When co-cultured with gastric epithelial cells, clinical strains of H. pylori from the high risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low risk strains. These findings were not attributable to differences in the CagA oncoprotein. Gastric tissues from subjects from the high risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG, and IM. In Mongolian gerbils, a prototype colonizing strain from the high risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low risk region. Treatment of gerbils with either α-difluoromethylornithine (DFMO), an inhibitor of ODC, or MDL 72527, an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention.
Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAβN (Phe-Arg β-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.