We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
Subseafloor sulfate concentrations typically decrease with depth as this electron acceptor is consumed by respiring microorganisms. However, studies show that seawater can flow through hydraulically conductive basalt to deliver sulfate upwards into deeply buried overlying sediments. Our previous work on IODP Site C0012A (Nankai Trough, Japan) revealed that recirculation of sulfate through the subducting Philippine Sea Plate stimulated microbial activity near the sediment–basement interface (SBI). Here, we describe the microbial ecology, phylogeny, and energetic requirements of population of aero‐tolerant sulfate‐reducing bacteria in the deep subseafloor. We identified dissimilatory sulfite reductase gene (dsr) sequences 93% related to oxygen‐tolerant Desulfovibrionales species across all reaction zones while no SRB were detected in drilling fluid control samples. Pore fluid chemistry revealed low concentrations of methane (<0.25 mM), while hydrogen levels were consistent with active bacterial sulfate reduction (0.51–1.52 nM). Solid phase total organic carbon (TOC) was also considerably low in these subseafloor sediments. Our results reveal the phylogenetic diversity, potential function, and physiological tolerance of a community of sulfate‐reducing bacteria living at ~480 m below subducting seafloor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.