Stretchable circuits have the potential to enable integrating electronics in everyday objects, but also skin-like, imperceptible electronic applications. However, manufacturing stretchable electronics requires developing novel manufacturing methods and using novel materials at least as substrate. Since the elastic materials for stretchable electronics are relatively soft, using traditional manufacturing methods becomes more problematic, whereas contactless material deposition by inkjet-printing is unaffected by such material properties. This study concentrates on feasibility analysis of using inkjet printing in manufacturing of stretchable electronics. First, printing related challenges are evaluated by manufacturing test structures with inkjet-printer using silver nanoparticle ink on elastic thermoplastic polyurethane substrate and sintering structures in convection oven. Adhesion between ink and substrate, but also sheet resistance, is evaluated. A minimum sheet resistance approx. of 26 m was obtained, and peak strains of inkjet-printed conductors are found to be between 1.0 % and 1.5 %, but conductivity is observed to be almost fully reversible when strain is released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.