The state of the art in the development, implementation, validation, and application of local hybrid functionals with position‐dependent exact‐exchange admixture is reviewed comprehensively. Starting from the general formulation of a local hybrid functional, possible constructions of local mixing functions to determine the position dependence are scrutinized in terms of their exact properties as well as their desirable features. The gauge problem pertaining to the ambiguity of exchange‐energy densities is discussed. “Smoking guns” for the gauge problem are identified, and the first calibration functions to improve the match of the exact and semi‐local exchange‐energy densities are compared. In view of the appearance of nonstandard exact‐exchange integrals, a crucial aspect is the efficient implementation of local hybrid functionals. This has been achieved recently using a resolution of the identity and/or semi‐numerical techniques, both for ground‐state energies and gradients, and for linear‐response time‐dependent density functional theory. The validation and early applications of local hybrids are reviewed, including thermochemistry, reaction barriers, structures and vibrational frequencies, electric and magnetic properties, as well as electronic excitation spectra. This article is categorized under: Electronic Structure Theory > Density Functional Theory Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry
The first systematic evaluation of local hybrid functionals for the calculation of electronic excitation energies within linear-response time-dependent density functional theory (TDDFT) is reported. Using our recent efficient semi-numerical TDDFT implementation [T. M. Maier et al., J. Chem. Theory Comput. 11, 4226 (2015)], four simple, thermochemically optimized one-parameter local hybrid functionals based on local spin-density exchange are evaluated against a database of singlet and triplet valence excitations of organic molecules, and against a mixed database including also Rydberg, intramolecular charge-transfer (CT) and core excitations. The four local hybrids exhibit comparable performance to standard global or range-separated hybrid functionals for common singlet valence excitations, but several local hybrids outperform all other functionals tested for the triplet excitations of the first test set, as well as for relative energies of excited states. Evaluation for the combined second test set shows that local hybrids can also provide excellent Rydberg and core excitations, in the latter case rivaling specialized functionals optimized specifically for such excitations. This good performance of local hybrids for different excitation types could be traced to relatively large exact-exchange (EXX) admixtures in a spatial region intermediate between valence and asymptotics, as well as close to the nucleus, and lower EXX admixtures in the valence region. In contrast, the tested local hybrids cannot compete with the best range-separated hybrids for intra- and intermolecular CT excitation energies. Possible directions for improvement in the latter category are discussed. As the used efficient TDDFT implementation requires essentially the same computational effort for global and local hybrids, applications of local hybrid functionals to excited-state problems appear promising in a wide range of fields. Influences of current-density dependence of local kinetic-energy dependent local hybrids, differences between spin-resolved and "common" local mixing functions in local hybrids, and the effects of the Tamm-Dancoff approximation on the excitation energies are also discussed.
A new local hybrid functional, LH20t, with a position-dependent exact-exchange admixture governed by a simple local mixing function (g(r) = b·τ W (r)/τ(r)), combined with gradient-corrected (PBE) exchange and meta-GGA (B95) correlation, as well as a second-order GGA-based pig2 calibration function to address the ambiguity of exchange-energy densities, has been constructed. The adjustable parameters of LH20t have been optimized in a multistep procedure based on thermochemical kinetics data and measures of spurious nondynamical correlation. LH20t has subsequently been evaluated for the full GMTKN55 main-group energetics test suite, with and without an added DFT-D4 dispersion correction. Performance of the new functional in the GMTKN55 tests is excellent, better than any global hybrid so far, approaching the best results for any rung-4 functional, without any noticeable artifacts due to the gauge ambiguity. The robust performance across the board is combined with enhanced exact-exchange admixtures of >70% near the nuclei and asymptotically (but low admixture in bonds). This helps to provide excellent performance for a wide variety of excitation classes (core, valence singlet and triplet, Rydberg, short-range intervalence charge-transfer) in TDDFT evaluations. Notably, LH20t is the first functional that provides simultaneously the correct description for the most extreme localized and delocalized cases of the MVO-10 test set of gas-phase mixed-valence systems. This outstanding performance for mixed-valence systems, which signals a very fine balance between reduced delocalization errors and a reasonable description of left–right correlation, is corroborated by tests on ground- and excited-state properties for organic and organometallic mixed-valence systems in solution.
Local hybrid functionals with position-dependent exact-exchange admixture offer increased flexibility compared to global hybrids. For sufficiently advanced functionals of this type, this is expected to hold also for a wide range of electronic excitations within time-dependent density functional theory (TDDFT). Following a recent semi-numerical implementation of local hybrid functionals for ground-state self-consistent-field calculations (Bahmann, H.; Kaupp, M. J. Chem. Theory Comput. 2015, 11, 1540-1548), the first linear-response TDDFT implementation of local hybrids is reported, using a semi-numerical integration technique. The timings and accuracy of the semi-numerical implementation are evaluated by comparison with analytical schemes for time-dependent Hartree-Fock (TDHF) and for the TPSSh global hybrid. In combination with the RI approximation to the Coulomb part of the kernel, the semi-numerical implementation is faster than the existing analytical TDDFT/TDHF implementation of global hybrid functionals in the TURBOMOLE code, even for small systems and moderate basis sets. Moreover, timings for global and local hybrids are practically equal for the semi-numerical scheme. The way to TDDFT calculations with local hybrid functionals for large systems is thus now open, and more sophisticated parametrizations of local hybrids may be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.