Kinesin-12 motors are a little studied branch of the kinesin superfamily with the human protein (Kif15) implicated in spindle mechanics and chromosome movement. In this study, we reconstitute full-length hKif15 and its microtubule-targeting factor hTpx2 in vitro to gain insight into the motors mode of operation. We reveal that hKif15 is a plus-end-directed processive homotetramer that can step against loads of up to 3.5 pN. We further show that hKif15 is the first kinesin that effectively switches microtubule tracks at intersections, enabling it to navigate microtubule networks, such as the spindle. hKif15 tetramers are also capable of cross-linking microtubules, but unexpectedly, this does not depend on hTpx2. Instead, we find that hTpx2 inhibits hKif15 stepping when microtubule-bound. Our data reveal that hKif15 is a second tetrameric spindle motor in addition to the kinesin-5 Eg5 and provides insight into the mechanisms by which hKif15 and its inhibitor hTpx2 modulate spindle microtubule architecture.DOI:
http://dx.doi.org/10.7554/eLife.01724.001
Kinesin-8 Kif18b shortens astral microtubules in mitosis. Combining cell biology and biochemical reconstitution, McHugh et al. show that Kif18b walks and accumulates to microtubule plus ends in a phosphospecific manner to regulate astral microtubule dynamics and center the mitotic spindle.
Mitotic spindle positioning specifies the plane of cell division during anaphase. Spindle orientation and positioning is therefore critical to ensure symmetric division in mitosis and asymmetric division during development. The control of astral microtubule length plays an essential role in positioning the spindle. Here we show using gene knockout that the Kinesin-8 Kif18b controls microtubule length to center the mitotic spindle at metaphase. Using an integrated approach, we reveal that Kif18b is a highly processive plus end-directed motor that uses a C-terminal non-motor microtubule-binding region to accumulate at growing microtubule plus ends. This region is regulated by phosphorylation to spatially control Kif18b accumulation at plus ends and is essential for Kif18b-dependent spindle positioning and regulation of microtubule length. Finally, we demonstrate that Kif18b shortens microtubules by increasing the catastrophe rate of dynamic microtubules. Overall, our work reveals that Kif18b utilizes its motile properties to reach microtubule ends where it regulates astral microtubule length to ensure spindle centering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.