The Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is one of the central signaling hubs in inflammatory, immune and cancer cells. Inhibiting the JAK-STAT pathway with JAK inhibitors (jakinibs) constitutes an important therapeutic strategy in cancer and chronic inflammatory diseases like rheumatoid arthritis (RA). FDA has approved different jakinibs for the treatment of RA, including tofacitinib, baricitinib and upadacitinib, and several jakinibs are being tested in clinical trials. Here, we reviewed published studies of jakinib effects on resolving synovial pathology in inflammatory arthritis. We discussed the results of jakinibs on structural joint damage in clinical trials and explored the effects of jakinibs across different in vitro, ex vivo, and in vivo synovial experimental models. We delved rigorously into experimental designs of in vitro fibroblast studies, deconvoluted jakinib efficacy in synovial fibroblasts across diverse experimental conditions and discussed their translatability in vivo. Synovial fibroblasts can readily activate the JAK-STAT signaling pathway in response to cytokine stimulation. We highlighted rather limited effects of jakinibs on the in vitro cultured synovial fibroblasts and inferred that direct and indirect (immune cell-dependent) actions of jakinibs are required to curb the fibroblast pathology in vivo. These actions have not been mimicked optimally in current in vitro experimental designs, where inflammatory stimuli do not naturally clear out with treatment as they do in vivo. While summarizing the broad knowledge of synovial jakinib effects, our review uniquely challenges future study designs to better mimick the jakinib actions in broader cell communities, as occurring in vivo in the inflamed synovium. This can deepen our understanding of collective synovial activities of jakinibs and their therapeutic limitations, thereby fostering jakinib development in arthritis.
Objective Systemic sclerosis (SSc) is characterized by dysregulation of type I interferon (IFN) signaling. CD52 is known for its immunosuppressive functions in T cells. This study was undertaken to investigate the role of CD52 in monocyte adhesion and type I IFN signaling in patients with SSc. Methods Transcriptome profiles of circulating CD14+ monocytes from patients with limited cutaneous SSc (lcSSc), patients with diffuse cutaneous SSc (dcSSs), and healthy controls were analyzed by RNA sequencing. Levels of CD52, CD11b/integrin αΜ, and CD18/integrin β2 in whole blood were assessed by flow cytometry. CD52 expression was analyzed in relation to disease phenotype (early, lcSSc, dcSSc) and autoantibody profiles. The impact of overexpression, knockdown, and antibody blocking of CD52 was analyzed by gene and protein expression assays and functional assays. Results Pathway enrichment analysis indicated an increase in adhesion‐ and type I IFN–related genes in monocytes from SSc patients. These cells displayed up‐regulated expression of CD11b/CD18, reduced expression of CD52, and enhanced adhesion to intercellular adhesion molecule 1 and endothelial cells. Changes in CD52 expression were consistent with the SSc subtypes, as well as with immunosuppressive treatments, autoantibody profiles, and monocyte adhesion properties in patients with SSc. Overexpression of CD52 led to decreased levels of CD18 and monocyte adhesion, while knockdown of CD52 increased monocyte adhesion. Experiments with the humanized anti‐CD52 monoclonal antibody alemtuzumab in blood samples from healthy controls increased monocyte adhesion and CD11b/CD18 expression, and enhanced type I IFN responses. Monocytic CD52 expression was up‐regulated by interleukin‐4 (IL‐4)/IL‐13 via the STAT6 pathway, and was down‐regulated by lipopolysaccharide and IFNs α, β, and γ in a JAK1 and histone deacetylase IIa (HDAC IIa)–dependent manner. Conclusion Down‐regulation of the antiadhesion CD52 antigen in CD14+ monocytes represents a novel mechanism in the pathogenesis of SSc. Targeting of the IFN–HDAC–CD52 axis in monocytes might represent a new therapeutic option for patients with early SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.