The outbreak of the COVID-19 pandemic caused the death of a large number of people. Millions ofpeople are infected by this virus and are still getting infected day by day. As the cost and required time ofconventional RT-PCR tests to detect COVID-19, researchers are trying to use medical images like X-Ray andComputed Tomography (CT) images to detect it with the help of Artificial Intelligence (AI) based systems. Inthis paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 frommedical images using X-Ray or CT of lung images. We collected information about available research resourcesand inspected a total of 80 papers from the time period of February 21, 2020 to June 20, 2020. We explored andanalyzed datasets, preprocessing techniques, segmentation, feature extraction, classification and experimentalresults which can be helpful for finding future research directions in the domain of automatic diagnosis ofCovid-19 disease using Artificial Intelligence (AI) based frameworks.
The outbreak of the Coronavirus disease 2019 (COVID-19) caused the death of a large number of people and declared as a pandemic by the World Health Organization. Millions of people are infected by this virus and are still getting infected every day. As the cost and required time of conventional Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests to detect COVID-19 is uneconomical and excessive, researchers are trying to use medical images such as X-ray and Computed Tomography (CT) images to detect this disease with the help of Artificial Intelligence (AI)-based systems, to assist in automating the scanning procedure. In this paper, we reviewed some of these newly emerging AI-based models that can detect COVID-19 from X-ray or CT of lung images. We collected information about available research resources and inspected a total of 80 papers till June 20, 2020. We explored and analyzed data sets, preprocessing techniques, segmentation methods, feature extraction, classification, and experimental results which can be helpful for finding future research directions in the domain of automatic diagnosis of COVID-19 disease using AI-based frameworks. It is also reflected that there is a scarcity of annotated medical images/data sets of COVID-19 affected people, which requires enhancing, segmentation in preprocessing, and domain adaptation in transfer learning for a model, producing an optimal result in model performance. This survey can be the starting point for a novice/beginner level researcher to work on COVID-19 classification.
After it's inception, COVID-19 has spread rapidly all across the globe. Considering this outbreak, by far, it is the most decisive task to detect early and isolate the patients quickly to contain the spread of this virus. In such cases, artificial intelligence and machine learning or deep learning methods can come to aid. For that purpose, we have conducted a qualitative investigation to inspect 12 off-the-shelf Convolution Neural Network (CNN) architectures in classifying COVID-19 from CT scan images. Furthermore, a segmentation algorithm for biomedical images -U-Net, is analyzed to evaluate the performance of the CNN models. A publicly available dataset (SARS-COV-2 CT-Scan) containing a total of 2481 CT scan images is employed for the performance evaluation. In terms of feature extraction by excluding the segmentation technique, a performance of 88.60% as the F1 Score and 89.31% as accuracy is achieved by training DenseNet169 architecture. Adopting the U-Net segmentation method, we accomplished the most optimal accuracy and F1 Scores as 89.92% and 89.67% respectively on DenseNet201 model. Furthermore, evaluating the performances, we can affirm that a combination of a Transfer Learning architecture with a segmentation technique (U-Net) enhances the performance of the classification model.
The pandemic, originated by novel coronavirus 2019 (COVID-19), continuing its devastating effect on the health, well-being, and economy of the global population. A critical step to restrain this pandemic is the early detection of COVID-19 in the human body, to constraint the exposure and control the spread of the virus. Chest X-Rays are one of the noninvasive tools to detect this disease as the manual PCR diagnosis process is quite tedious and time-consuming. In this work, we propose an automated COVID-19 classifier, utilizing available COVID and non-COVID X-Ray datasets, along with High Resolution Network (HRNet) for feature extraction embedding with the UNet for segmentation purposes. To evaluate the proposed dataset, several baseline experiments have been performed employing numerous deep learning architectures. With extensive experiment, we got 99.26% accuracy, 98.53% sensitivity, and 98.82% specificity with HRNet which surpasses the performances of the existing models. Our proposed methodology ensures unbiased high accuracy, which increases the probability of incorporating X-Ray images into the diagnosis of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.