Abstract-Trustworthiness especially for service oriented system is very important topic now a day in IT field of the whole world. There are many successful E-commerce organizations presently run in the whole world, but E-commerce has not reached its full potential. The main reason behind this is lack of Trust of people in e-commerce. Again, proper models are still absent for calculating trust of different e-commerce organizations. Most of the present trust models are subjective and have failed to account vagueness and ambiguity of different domain. In this paper we have proposed a new fuzzy logic based Certain Trust model which considers these ambiguity and vagueness of different domain. Fuzzy Based Certain Trust Model depends on some certain values given by experts and developers. can be applied in a system like cloud computing, internet, website, e-commerce, etc. to ensure trustworthiness of these platforms. In this paper we show, although fuzzy works with uncertainties, proposed model works with some certain values. Some experimental results and validation of the model with linguistics terms are shown at the last part of the paper.
Biometric technology is used to identify a person based on his/her physical behavioral characteristics. One of the extensive uses of biometric technology is a fingerprint recognition system. The technology has broad use mainly for its easiness, reliability and accuracy in human identification process. This paper presents work done on minutiae based palmtop recognition system for automatic door open and locking system. Here, the palmtop recognition system works by taking an image of the person, partitioning it, processing it and finally verifying the person. This system provides input for an electric circuit. The circuitry system consists of two unique states; door open and door lock. The whole system basically uses extensive Image processing for minutiae based palmtop recognition. Thus reducing the probability of error in human recognition and solves maximum problems of fingerprint recognition. This paper shows a better solution for recognizing people, which helps to solve security related problems in human life.
Abstract-Trustworthiness especially for service oriented system is very important topic now a day in IT field of the whole world. Certain Trust Model depends on some certain values given by experts and developers. Here, main parameters for calculating trust are certainty and average rating. In this paper we have proposed an Extension of Certain Trust Model, mainly the representation portion based on probabilistic logic and fuzzy logic. This extended model can be applied in a system like cloud computing, internet, website, e-commerce, etc. to ensure trustworthiness of these platforms. The model uses the concept of fuzzy logic to add fuzziness with certainty and average rating to calculate the trustworthiness of a system more accurately. We have proposed two new parameters -trust T and behavioral probability P, which will help both the users and the developers of the system to understand its present condition easily. The linguistic variables are defined for both T and P and then these variables are implemented in our laboratory to verify the proposed trust model. We represent the trustworthiness of test system for two cases of evidence value using Fuzzy Associative Memory (FAM). We use inference rules and defuzzification method for verifying the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.