To evaluate the relative roles of seed availability and competitive interactions in creating within-community patterns of species richness in unproductive grassland, we conducted a sowing experiment in a dry calcareous (alvar) grassland, where both the number of arriving seeds and the number of arriving species were approximately doubled compared to the natural seed rain. Also, in half of the plots, 36% of the vegetation and bryophyte cover was removed to simulate disturbance. Sowing significantly increased species richness and the number of seedlings in plots. Disturbance increased the number of seedlings but had no significant effect on species richness. In the first year, the highest number of seedlings was found in disturbed and sown plots. The dynamics of seedling numbers differed among species. Of the 15 sown species, seedlings of nine species were found in some plots. The number of seedlings of two species were not dependent on treatments, those of three species depended only on sowing, and for four species there was a significant positive interaction between sowing and disturbance. The establishment of sown species was not dependent on initial species richness or number of adult ramets in experimental plots. It was concluded that, though the behavior of individual species may differ, the local deficiency of seeds may be an important force generating small-scale community patterns of calcareous grasslands.
Two silver birch ( Betula pendula Roth) clones K1659 and V5952 were grown in open-top chambers over 3 years (age 7-9 years). The treatments were increased CO 2 concentration (+CO 2 , 72 Pa), increased O 3 concentration (+O 3 , 2 ¥ ¥ ¥ ¥ ambient O 3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO 2 + O 3 ). Thirty-seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer-operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78-90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b 6 f, Rubisco specificity and K m (CO 2 ) were not influenced by treatments. Net photosynthetic rate responded to +CO 2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO 2 in clones K1659 and V5952, respectively. The elevated O 3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O 3 had less effect in the presence of +CO 2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O 3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress.
We have developed statistical models for estimating the failure rate of polymerase chain reaction (PCR) primers using 236 primer sequence-related factors. The model involved 1314 primer pairs and is based on more than 80 000 PCR experiments. We found that the most important factor in determining PCR failure is the number of predicted primer-binding sites in the genomic DNA. We also compared different ways of defining primer-binding sites (fixed length word versus thermodynamic model; exact match versus matches including 1–2 mismatches). We found that the most efficient prediction of PCR failure rates can be achieved using a combination of four factors (number of primer-binding sites counted in different ways plus GC% of the primer) combined into single statistical model GM1. According to our estimations from experimental data, the GM1 model can reduce the average failure rate of PCR primers nearly 3-fold (from 17% to 6%). The GM1 model can easily be implemented in software to premask genome sequences for potentially failing PCR primers, thus improving large-scale PCR-primer design.
The fish kill in lake Peipsi (Estonia/Russia) during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, Osmerus eperlanus eperlanus m. spirinchus (Pallas), the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva). Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, e.g. smelt and vendace Coregonus albula (L.), the abundance of bottom-dwelling fishes such as ruffe Gymnocephalus cernuus (L.) and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.