Cognitive radio (CR) is seen as a promising technology to make radio spectrum usage more effective by providing an opportunistic access for secondary users to the licensed spectrum areas. CR systems need to detect the presence of a primary user (PU) signal by continuously sensing the spectrum area of interest. Radiowave propagation effects like fading and shadowing often complicate sensing of spectrum holes because the PU signal can be weak in a particular area. Cooperative spectrum sensing is seen as a prospective solution to enhance the detection of PU signals. This paper studies distributed spectrum sensing in a cognitive radio context. We investigate distributed energy detection schemes without using any fusion center. We propose the usage of distributed, diffusion least mean square (LMS) type of power estimation algorithms. In this paper an Adapt and Combine (ATC) diffusion based power estimation scheme is proposed and the performance is compared with the Combine and Adapt (CTA) and ring-around schemes in a common framework. The PU signal is assumed to be slowly fading. We analyse the resulting energy detection performance and verify the theoretical findings through simulations.
A combination of two complex normalized least mean square (NLMS) adaptive filters that adapt on the same input signal at the same time is investigated. One of the filters has a large and the other one has a small step size. The outputs of the filters are combined together through a mixing parameter A. This combination is an interesting new way of achieving simultaneously a fast initial convergence and a small steady state error of an adaptive algorithm. The mixing parameter is computed from the output signals of the individual filters. The expressions characterizing the time evolution of the mean square deviation and the excess mean square error of the combination scheme are derived. The theoretical results are verified by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.