A vesicle system is described that possesses a pH-induced "breathing" feature and consists of a three-layered wall structure. The "breathing" feature consists of a highly reversible vesicle volume change by a factor of ca. 7, accompanied by diffusion of species into and out of the vesicles with a relaxation time of ca. 1 min. The triblock copolymer poly(ethylene oxide)(45)-block-polystyrene(130)-block-poly(2-diethylaminoethyl methacrylate)(120) (PEO(45)-b-PS(130)-b-PDEA(120)) was synthesized via ATRP. Self-assembly into vesicles was carried out at a pH of ca.10.4. The vesicle wall was shown by cryo-TEM to consist of a sandwich of two external ca. 4 nm thick continuous PS layers and one ca. 17 nm thick PDEA layer in the middle. As the pH decreases, both the vesicle size and the thickness of all three layers increase. The increase of the thickness of the intermediate PDEA layer arises from the protonation and hydration, but the swelling is constrained by the PS layers. The increase of the thickness of the two PS layers is a result of an increasing incompatibility and an accompanying sharpening of the interface between the PS layers and the PDEA layer. Starting at a pH slightly below 6, progressive swelling of the PDEA layer with decreasing pH induces a cracking of the two PS layers and also a sharp increase of the vesicle size and the wall thickness. By pH 3.4, the vesicle size has increased by a factor of approximately 1.9 and the wall shows a cracked surface. These changes between pH 10.4 and 3.4 are highly reversible with the relaxation time of ca. 1 min and can be performed repeatedly. The change in the wall structure not only increases dramatically the wall permeability to water but also greatly expands the rate of proton diffusion from practically zero to extremely rapid.
The integrity of block copolymer micelles is important for their effectiveness and successful delivery of the incorporated drugs. Here we evaluate the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles in media of varying chemical complexity and in cells by using fluorogenic micelles. Fluorogenic dye fluorescein-5-carbonyl azide diacetate was covalently attached to the micelle-core-forming part of the block copolymer, poly(caprolactone). The fluorescence was not detectable unless the poly(caprolactone)21-b-poly(ethylene oxide)45 micelles were destroyed and the fluorogenic dye was activated by deesterification. The fluorescence of the activated dye from destroyed micelles was easily detectable in various media and in cells. Micelles were stable in simple media such as phosphate-buffered saline but disassembled to varying extents with increasing chemical complexity of the media and addition of serum. The integrity of the internalized micelles within the cells showed a time-dependent decrease but remained largely preserved (80%) after 20 h of incubation with cells. A proof of principle was also demonstrated in vivo in mice. The fluorogenic approach to micelle integrity assessment presented herein should lend itself to other block copolymer micelles and assessments of their integrity in complex biological systems in vitro and in vivo.
This work describes a versatile and universal polycation system based on oligoamines grafted on natural polysaccharides that is capable of complexing various plasmids and administering them into various cells in high yield to produce a desired protein. These polycations are expected to better meet the requirements for effective complexation and delivery of plasmid or an antisense and to biodegrade into nontoxic components at a controlled rate. The developed biodegradable polycations are based on spermine, a natural tetramine, conjugated to dextran or arabinogalactan. These polycations were prepared by reductive amination of oxidized polysaccharides with the desired oligoamines. The Schiff base conjugates thus obtained were reduced to the stable amine conjugates by sodium borohydride. Over 300 different polycations were prepared starting from various polysaccharides and oligoamines, mainly oligoamines of two to four amino groups. Although most of these conjugates formed stable complexes with various plasmids as determined by turbidity experiments, only a few polycations were found to be active in transfecting cells. This work indicates that the structure of the polycation plays a significant role in the transfection activity of polycations.
The self-assembly of the biamphiphilic triblock copolymer poly(ethylene oxide)-b-poly(caprolactone)-b-poly(acrylic acid) into polymer vesicles is studied. The vesicles provide both biocompatibility and biodegradability. Moreover, the biamphiphilic nature of the triblock copolymer provides different surface properties in the interior and in the outer interface of the vesicles. Preparation of the aggregates by direct dissolution of the copolymer in a solution of albumin does not alter the morphology of the aggregates, and thus, they have the potential to immobilize protein molecules. Since a part of the protein is encapsulated in the interior of the vesicles, they can be used as nanocontainers. A further fraction of the protein is bound to the outer interface, which is primarily composed of the poly(acrylic acid) tails. Immobilization of protein on the outer interface can stabilize the colloidal particles and also provide them with a biofunctional component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.