Social robots can be used in education as tutors or peer learners. They have been shown to be effective at increasing cognitive and affective outcomes and have achieved outcomes similar to those of human tutoring on restricted tasks. This is largely because of their physical presence, which traditional learning technologies lack. We review the potential of social robots in education, discuss the technical challenges, and consider how the robot's appearance and behavior affect learning outcomes.
The paper proposes a number of models to examine through what mechanisms a population of autonomous agents could arrive at a repertoire of perceptually grounded categories that is sufficiently shared to allow successful communication. The models are inspired by the main approaches to human categorisation being discussed in the literature: nativism, empiricism, and culturalism. Colour is taken as a case study. Although the paper takes no stance on which position is to be accepted as final truth with respect to human categorisation and naming, it points to theoretical constraints that make each position more or less likely and contains clear suggestions on what the best engineering solution would be. Specifically, it argues that the collective choice of a shared repertoire must integrate multiple constraints, including constraints coming from communication.
For robots to interact effectively with human users they must be capable of coordinated, timely behavior in response to social context. The Adaptive Strategies for Sustainable Long-Term Social Interaction (ALIZ-E) project focuses on the design of long-term, adaptive social interaction between robots and child users in real-world settings. In this paper, we report on the iterative approach taken to scientific and technical developments toward this goal: advancing individual technical competencies and integrating them to form an autonomous robotic system for evaluation "in the wild." The first evaluation iterations have shown the potential of this methodology in terms of adaptation of the robot to the interactant and the resulting influences on engagement. This sets the foundation for an ongoing research program that seeks to develop technologies for social robot companions.
The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.