Semi-Supervised Learning (SSL) algorithms have shown great potential in training regimes when access to labeled data is scarce but access to unlabeled data is plentiful. However, our experiments illustrate several shortcomings that prior SSL algorithms suffer from. In particular, poor performance when unlabeled and labeled data distributions differ. To address these observations, we develop RealMix, which achieves state-of-the-art results on standard benchmark datasets across different labeled and unlabeled set sizes while overcoming the aforementioned challenges. Notably, RealMix achieves an error rate of 9.79% on CIFAR10 with 250 labels, and is the only SSL method tested able to surpass baseline performance when there is significant mismatch in the labeled and unlabeled data distributions. RealMix demonstrates how SSL can be used in real world situations with limited access to both data and compute and guides further research in SSL with practical applicability in mind.
Transforming a graphical user interface screenshot created by a designer into computer code is a typical task conducted by a developer in order to build customized software, websites, and mobile applications. In this paper, we show that deep learning methods can be leveraged to train a model end-to-end to automatically generate code from a single input image with over 77% of accuracy for three different platforms (i.e. iOS, Android and web-based technologies).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.