Land cover mapping from satellite images has progressed from visual and statistical approaches to Random Forests (RFs) and, more recently, advanced image recognition techniques such as convolutional neural networks (CNNs). CNNs have a conceptual benefit over RFs in recognising spatial feature context, but potentially at the cost of reduced spatial detail. We tested the use of CNNs for improved land cover mapping based on Landsat data, compared with RFs, for a study area of approximately 500 km × 500 km in southeastern Australia. Landsat 8 geomedian composite surface reflectances were available for 2018. Label data were a simple nine-member land cover classification derived from reference land use mapping (Catchment Scale Land Use of Australia—CLUM), and further enhanced by using custom forest extent mapping (Forests of Australia). Experiments were undertaken testing U-Net CNN for segmentation of Landsat 8 geomedian imagery to determine the optimal combination of input Landsat 8 bands. The results were compared with those from a simple autoencoder as well as an RF model. Segmentation test results for the best performing U-Net CNN models produced an overall accuracy of 79% and weighted-mean F1 score of 77% (9 band input) or 76% (6 band input) for a simple nine-member land cover classification, compared with 73% and 68% (6 band input), respectively, for the best RF model. We conclude that U-Net CNN models can generate annual land cover maps with good accuracy from proxy training data, and can also be used for quality control or improvement of existing land cover products.
Purpose -This paper seeks to report on the development of a new interface for "finding" and "getting" resources from Australian libraries. Design/methodology/approach -The National Library of Australia has provided online access to the Australian National Bibliographic Database since 1981. Containing the National Union Catalogue for Australia, its major role initially was to support shared cataloguing. The Kinetica service supports access to the database through its search service. Kinetica is being redeveloped over the period 2004 and 2005 to provide a more modern, standards-based service. The development is focused on increasing access by Australians to the nation's collections. The new interface for searching, Libraries Australia, was launched in December 2004 and incorporates a Google-style search interface with a range of new "get" functionality, enabling requesting from libraries and ordering from bookshops. The paper reports on the redevelopment project, particularly Libraries Australia. Findings -The new interface is found to more successfully meet the needs of searchers, particularly the general public. Originality/value -Summarises research undertaken to assess the needs of Australians for access to library collections. Also describes the technical architecture of the new search service and future directions for this national infrastructure for resource sharing in Australia. Issues for the future including universal access are identified.
Satellite imagery is the only feasible approach to annual monitoring and reporting on land cover change. Unfortunately, conventional pixel-based classification methods based on spectral response only (e.g., using random forests algorithms) have shown a lack of spatial and temporal stability due, for instance, to variability between individual pixels and changes in vegetation condition, respectively. Machine learning methods that consider spatial patterns in addition to reflectance can address some of these issues. In this study, a convolutional neural network (CNN) model, U-Net, was trained for a 500 km × 500 km region in southeast Australia using annual Landsat geomedian data for the relatively dry and wet years of 2018 and 2020, respectively. The label data for model training was an eight-class classification inferred from a static land-use map, enhanced using forest-extent mapping. Here, we wished to analyse the benefits of CNN-based land cover mapping and reporting over 34 years (1987–2020). We used the trained model to generate annual land cover maps for a 100 km × 100 km tile near the Australian Capital Territory. We developed innovative diagnostic methods to assess spatial and temporal stability, analysed how the CNN method differs from pixel-based mapping and compared it with two reference land cover products available for some years. Our U-Net CNN results showed better spatial and temporal stability with, respectively, overall accuracy of 89% verses 82% for reference pixel-based mapping, and 76% of pixels unchanged over 33 years. This gave a clearer insight into where and when land cover change occurred compared to reference mapping, where only 30% of pixels were conserved. Remaining issues include edge effects associated with the CNN method and a limited ability to distinguish some land cover types (e.g., broadacre crops vs. pasture). We conclude that the CNN model was better for understanding broad-scale land cover change, use in environmental accounting and natural resource management, whereas pixel-based approaches sometimes more accurately represented small-scale changes in land cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.