Com o aumento da disponibilidade de dados, sobretudo no contexto educacional, surgiram áreas específicas para extração de informações relevantes, como a Mineração de Dados Educacionais (MDE), que integra inúmeras técnicas que dão suporte à captação, processamento e análises desses conjuntos de registros. A principal técnica associada a MDE é a Aprendizagem de Máquina (AM), que vem sendo empregada a décadas no processamento de dados em diversos contextos, mas com a evolução tecnológica outras técnicas têm se sobressaído como a Aprendizagem Profunda (AP), baseada na aplicação de Redes Neurais Artificiais Multicamadas. Com foco neste contexto, esse estudo tem como objetivo realizar a previsão do desempenho de alunos, em um conjunto de dados públicos, e comparar as técnicas de AM e AP, ademais indicar quais os principais atributos preditores para o desempenho dos alunos. Para isso foi implementado um processo de MDE baseado em 4 etapas: 1) Coleta de dados; 2) Extração de recursos e limpeza de dados (pré-processamento e transformação); 3) Processamento analítico e algoritmos; e 4) Análise e interpretação dos resultados. Como resultado foi identificado que os modelos gerados a partir dos algoritmos tradicionais de AM têm um bom desempenho, mas inferior ao modelo AP que teve uma acurácia de 94%, bem como foi constatado que atributos relacionados às atividades escolares são mais preditores para o desempenho dos alunos do que os dados de características demográficas e socioeconômicas.
Educational Data Mining Techniques have been widely used in MOOC environments to conduct different educational analyzes. In this context, a systematic mapping was conducted in five databases in order to verify which aspects of studies are inherent to the use of Educational Data Mining in MOOCs. The search comprised the period from 2015 to 2019, and 253 searches were found, out of this total, 133 studies were selected. The results revealed that studies on performance analysis, behavior analysis, forum analysis and implementation of recommendation systems are the most frequent themes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.