We demonstrate the preservation of the Lyapunov modes in a system of hard disks by the underlying tangent space dynamics. This result is exact for the Zero modes and correct to order ϵ for the Transverse and Longitudinal-Momentum modes, where ϵ is linear in the mode number. For sufficiently large mode numbers, the ϵ terms become significant and the dynamics no longer preserves the mode structure. We propose a modified Gram-Schmidt procedure based on orthogonality with respect to the center zero space that produces the exact numerical mode. This Gram-Schmidt procedure can also exploit the orthogonality between conjugate modes and their symplectic structure in order to find a simple relation that determines the Lyapunov exponent from the Lyapunov mode. This involves a reclassification of the modes into either direction preserving or form preserving. These analytic methods assume a knowledge of the ordering of the modes within the Lyapunov spectrum, but gives both predictive power for the values of the exponents from the modes and describes the modes in greater detail than was previously achievable. Thus the modes and the exponents contain the same information.
The numerically observed approximate functional forms for the transverse and longitudinal-momentum proportional (LP) Gram-Schmidt Lyapunov modes have been studied for some time. We construct a field theory for a system where the number of particles is large enough so the Lyapunov mode contributions from each particle can be considered to change continuously with particle position, whose solution gives the observed functional forms for all modes. The wave equations obtained as solutions of the field theory are derived either phenomenologically or from the exact dynamics of two-dimensional hard particles. The wave speed of the LP modes is predicted to reasonable accuracy for a range of densities and system sizes.
The concepts of temperature and entropy as applied in equilibrium thermodynamics do not easily generalize to nonequilibrium systems and there are transient systems where thermodynamics cannot apply. However, it is possible that nonequilibrium steady states may have a thermodynamics description. We explore the consequences of a particular microscopic thermostat-reservoir contact needed to both stabilize and measure the temperature of a system. One particular mechanical connection mechanism is considered in detail and a contact resistance is observed in the numerical simulations. We propose a microscopic mechanism to explain this effect for both equilibrium and nonequilibrium systems. These results emphasize the difficulty in identifying a microscopic expression for the thermodynamic temperature. It is evident that the kinetic temperature is not necessarily equal to the thermodynamic temperature, especially when used to define the local temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.