The vortex-dominated flow around the triple-delta wing ADS-NA2-W1 aircraft is investigated in order to achieve a better understanding of the flow physics phenomena that occur over the aircraft particularly at the transonic speed condition. Both URANS and scale-resolving DDES have been employed in order to explore the range of suitability of current CFD methods. The Spalart–Allmaras One-Equation Model with corrections for negative turbulent viscosity and Rotation/Curvature (SA-negRC) is employed to close the RANS equations, whereas the SAneg-based DDES model is applied in the scale-resolving computations. The DLR TAU-Code is used to perform the numerical simulations. The deficiencies of the URANS results are illustrated and promising improvements are reached employing the SAneg-DDES numerical method. The hybrid method results show great advancement in the prediction of the multiple-delta wing flow by revealing physical aspects which have not been seen from URANS with sufficient accuracy like vortex–vortex interaction and shock-vortex interaction. These phenomena furthermore explain in a clear way the improved prediction of the surface pressure coefficient over the aircraft and consequently of the aerodynamic force and moment coefficients.
The present work provides an advancement in the prediction of delta wing flow and an improved understanding of various flow physical phenomena which occur over the wing in transonic conditions. Scale-resolving simulations of the vortex-dominated flow around a sharp leading-edge VFE-2 wing have been performed using the SA-based IDDES model. The complex leading-edge vortex pattern with embedded shocks and subsequent shock-vortex interaction is investigated. A promising accuracy has been achieved using the high-fidelity flow field data provided by the scale-resolving simulation results. Besides the assessment of sensitivity to spatial and temporal resolution, physical aspects are presented, which are not accessible in experimental data in such detail and require scale-resolving simulation approaches. This includes the observation of the vortex system and the shocks in the fully three-dimensional flow field data. Finally, turbulence-related quantities such as eddy viscosity and resolved Reynolds-stresses and their behaviour during the vortex formation and sustaining process are analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.