Cardiac allograft vasculopathy is thought to be triggered by an alloreactive response to the donor coronary vasculature, resulting in smooth muscle cell proliferation and ultimate occlusion of the donor coronary arteries. To determine whether allogeneic lymphocytes are capable of regulating endothelial-derived smooth muscle cell (SMC) growth factors, human aortic endothelial cells (HAECs) were exposed to allogeneic lymphocytes. The HAEC-lymphocyte co-cultures were assessed for (a) lymphocyte proliferation in response to the allogeneic HAECs; (b) release of soluble factors that stimulate human aortic SMC proliferation; and (c) alteration of HAEC mRNA levels for a panel of known SMC growth factors. Co-culture conditioned medium increased SMC proliferation, compared to medium conditioned by HAECs alone. HAECs exposed to allogeneic lymphocytes increased their expression of mRNA for basic fibroblast growth factor, transforming growth factors a and 0, and platelet derived growth factor A and B chains. These results demonstrate that allogeneic lymphocytes are capable of inducing HAECs to increase mRNA levels for several mesenchymal growth factors and to release bioactive products capable of stimulating SMC cell proliferation in vitro. Additionally, the data support the hypothesis that alloreactive lymphocytes can stimulate allogeneic donor endothelial cells to produce growth factors that may contribute to the intimal thickening seen in cardiac allograft vasculopathy. (J. Clin. Invest. 1993.
We have previously reported that cell-mediated immunity to vascular endothelium is associated with the development of cardiac allograft vasculopathy (CAV). The mechanism by which a cell-mediated immune response to the coronary vascular is translated into the development of CAV is, however unknown. Peripheral blood mononuclear cells (PBMCs) obtained serially following cardiac transplantation were cocultured with donor-specific human aortic endothelial cells (HAECs) in 47 allograft recipients, 9 of whom had CAV (CAV+) at 1 year by angiography. At 20 hr following coculture, HAEC poly (A+) RNA was isolated, reverse-transcribed, and the cDNA-amplified (PCR) for a panel of growth factors (GFs) known to alter smooth muscle cell proliferation or migration. Relative quantitation of PCR product was performed using high-pressure liquid chromatography (HPLC). Three patterns of GF regulation were observed depending on the GF, the time posttransplant, and whether the patient had CAV: (1) no regulation (TGF-beta, PDGF-A early post-tx); (2) upregulation irrespective of CAV (bFGF, PDGF-B, TGF-alpha early post-tx); and (3) preferential or exclusive upregulation by CAV+ patients (PDGF-A and TGF-alpha late post-tx, HB-EGF early and late post-tx). For example, using PBMCs as stimulators, obtained 6 months posttransplant from CAV+ patients, increases in HAEC-derived PDGF-A chain (31 +/- 7 to 69 +/- 11), TGF-alpha (97 +/- 27 to 201 +/- 23), and HB-EGF (78 +/- 16 to 173 +/- 27) mRNA were demonstrated (all P<0.05 or greater using HPLC peak area as units). These data demonstrate that cell-mediated activation of vascular endothelial cells in patients with CAV results in preferential upregulation of certain endothelial-derived mesenchymal growth factors capable of stimulating smooth muscle cell proliferation and migration.
CAV is associated with donor-specific cell-mediated alloreactivity to vascular endothelium. Humoral immunity does not appear to have a major role in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.