Organophosphorus compounds include many synthetic, neurotoxic substances that are commonly used as insecticides. The toxicity of these compounds is due to their ability to inhibit the enzyme acetylcholine esterase. Some of the most toxic organophosphates have been adapted for use as chemical warfare agents; the most well known are GA, GB, GD, GF, VX and VR. All of these compounds contain a chiral phosphorus center with the S P -enantiomers being significantly more toxic than the R P -enantiomers. Phosphotriesterase (PTE) is an enzyme capable of detoxifying these agents, but the stereochemical preference of the wild-type enzyme is for the R P -enantiomers. A series of enantiomerically pure chiral nerve agent analogues has been developed containing the relevant phosphoryl centers found in GB, GD, GF, VX and VR. Wild-type and mutant forms of PTE have been tested for their ability to hydrolyze this series of compounds. Mutant forms of PTE with significantly enhanced, as well as relaxed or reversed stereoselectivity, have been identified. A number of variants showed dramatically improved kinetic constants for the catalytic hydrolysis of the more toxic S P -enantiomers. Improvements of up to three orders of magnitude relative to the wild type enzyme were observed. Some of these mutants were tested against racemic mixtures of GB and GD. The kinetic constants obtained with the chiral nerve agent analogues accurately predict the improved activity and stereoselectivity against the authentic nerve agents used in this study.Organophosphorus compounds have been utilized for more than 50 years as insecticides for the protection of agricultural crops (1) and similar compounds have been developed as chemical warfare agents (2). The structures of these latter compounds are presented in Scheme 1 and include tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VX and VR. GA has a cyanide leaving group, the three remaining G-agents (GB, GD, and GF) have a fluoride leaving group, and the two versions of VX have a thiolate leaving group. The toxicity of these organophosphonates is due to the inactivation of acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of acetylcholine at neural synapses, through the phosphonylation of an active site serine residue (3). GA, GB, GF, VX, and VR contain a chiral phosphorus center and thus each of these nerve agents has two stereoisomers, while soman has four stereoisomers because of an additional chiral center within the pinacolyl substituent. The enantiomers are differentially toxic; the S Pstereoisomer of sarin reacts with AChE approximately ~10 4 times faster than the R Pstereoisomer and the two S P -stereoisomers of soman react ~10 5 times faster than the two † This work was supported by the NIH (GM 68550).
The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g., plasma-derived butyrylcholinesterase and erythrocytic acetylcholinesterase) or nonexisting (synaptic acetylcholinesterase). Here we identify a unique form of recombinant human butyrylcholinesterase that mimics the native enzyme assembly into tetramers; this form provides extended effective pharmacokinetics that is significantly enhanced by polyethylene glycol conjugation. We further demonstrate that this enzyme (but not a G117H/E197Q organophosphorus acid anhydride hydrolase catalytic variant) can prevent morbidity and mortality associated with organophosphorous nerve agent and pesticide exposure of animal subjects of two model species.countermeasures | nonconventional warfare agents | organophosphorous pesticides | protein engineering | transgenic plants B utyrylcholinesterase (BChE) is the major cholinesterase (ChE) in the serum of humans (1, 2). Although the closely related enzyme acetylcholinesterase (AChE) is well described as the primary synaptic regulator of cholinergic transmission, a definitive physiological role for BChE has not yet been demonstrated (3). BChE is catalytically promiscuous and hydrolyzes not only acetylcholine (ACh), but also longer-chain choline esters (e.g., butyrylcholine, its preferred substrate, and succinylcholine) and a variety of non-choline esters, such as acetylsalicylic acid (aspirin) and cocaine (4, 5). Moreover, BChE binds most environmentally occurring ChE inhibitors as well as man-made organophosphorous (OP) pesticides and nerve agents (NAs) (6, 7-10).The systemic biodistribution and affinity for ChE inhibitors allow endogenous BChE to provide broad-spectrum protection against various toxicants by their sequestration before they reach cholinergic synapses. However, under realistic high-dose exposure scenarios, BChE serum levels are too low to afford adequate protection, resulting in persistent cholinergic excitation due to irreversible inhibition of AChE and subsequent accumulation of ACh. Sublethal manifestations of this state include unregulated exocrine secretion and gastrointestinal hypermotility. Death usually results from unregulated stimulation at neuromuscular junction leading to hemodynamic instability and tetanic contraction of the respiratory muscles (11,12).Current OP poisoning therapy consists of atropine for muscarinic ACh receptor blockade and diazepam for symptomatic management of convulsions (12). Additionally, oxime therapy with 2-pralidoxime (2-PAM) can effectively reactivate some but not all OP-AChE adducts (13)(14)(15). This standard therapeutic approach can reduce mortality, but insufficiently prevents the incapacitation associated with OP toxicity (12, 16).Prophylaxis by administration of exogenous ChEs has proven successful in reducing OP-associated morbidity and mortality, but requires the availability of rel...
Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.