We revisit a venerable question: what is the nature of the ordering in a superconductor? We find that the answer is properly that the superconducting state exhibits topological order in the sense of Wen, i.e. that while it lacks a local order parameter, it is sensitive to the global topology of the underlying manifold and exhibits an associated fractionalization of quantum numbers. We show that this perspective unifies a number of previous observations on superconductors and their low lying excitations and that this complex can be elegantly summarized in a purely topological action of the "BF " type and its elementary quantization. On manifolds with boundaries, the BF action correctly predicts non-chiral edge states, gapped in general, but crucial for fractionalization and establishing the ground state degeneracy. In all of this the role of the physical electromagnetic fields is central. We also observe that the BF action describes the topological order in several other physically distinct systems thus providing an example of topological universality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.