Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.
Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease.
Increased glucose production is a hallmark of type 2 diabetes and alterations in lipid metabolism have a causative role in its pathophysiology. Here we postulate that physiological increments in plasma fatty acids can be sensed within the hypothalamus and that this sensing is required to balance their direct stimulatory action on hepatic gluconeogenesis. In the presence of physiologically-relevant increases in the levels of plasma fatty acids, negating their central action on hepatic glucose fluxes through (i) inhibition of the hypothalamic esterification of fatty acids, (ii) genetic deletion (Sur1-deficient mice) of hypothalamic K(ATP) channels or pharmacological blockade (K(ATP) blocker) of their activation by fatty acids, or (iii) surgical resection of the hepatic branch of the vagus nerve led to a marked increase in liver glucose production. These findings indicate that a physiological elevation in circulating lipids can be sensed within the hypothalamus and that a defect in hypothalamic lipid sensing disrupts glucose homeostasis.
Selective regions of the brain, including the hypothalamus, are capable of gathering information on the body's nutritional status in order to implement appropriate behavioral and metabolic responses to changes in fuel availability. This review focuses on direct metabolic signaling within the hypothalamus. There is growing evidence supporting the idea that fatty acid metabolism within discrete hypothalamic regions can function as a sensor for nutrient availability that can integrate multiple nutritional and hormonal signals.
Hyperglycemia is a major independent risk factor for diabetic macrovascular disease. The consequences of exposure of endothelial cells to hyperglycemia are well established. However, little is known about how adipocytes respond to both acute as well as chronic exposure to physiological levels of hyperglycemia. Here, we analyze adipocytes exposed to hyperglycemia both in vitro as well as in vivo. Comparing cells differentiated at 4 mM to cells differentiated at 25 mM glucose (the standard differentiation protocol) reveals severe insulin resistance in cells exposed to 25 mM glucose. A global assessment of transcriptional changes shows an up-regulation of a number of mitochondrial proteins. Exposure to hyperglycemia is associated with a significant induction of reactive oxygen species (ROS), both in vitro as well as in vivo in adipocytes isolated from streptozotocin-treated hyperglycemic mice. Furthermore, hyperglycemia for a few hours in a clamped setting will trigger the induction of a pro-inflammatory response in adipose tissue from rats that can effectively be reduced by co-infusion of N-acetylcysteine (NAC). ROS levels in 3T3-L1 adipocytes can be reduced significantly with pharmacological agents that lower the mitochondrial membrane potential, or by overexpression of uncoupling protein 1 or superoxide dismutase. In parallel with ROS, interleukin-6 secretion from adipocytes is significantly reduced. On the other hand, treatments that lead to a hyperpolarization of the mitochondrial membrane, such as overexpression of the mitochondrial dicarboxylate carrier result in increased ROS formation and decreased insulin sensitivity, even under normoglycemic conditions. Combined, these results highlight the importance ROS production in adipocytes and the associated insulin resistance and inflammatory response.Many genetic and environmental factors can lead to the development of insulin resistance. Once a degree of insulin resistance is established, decreased glucose tolerance arises and occasional bouts of hyperglycemia ensue. Hyperglycemia can in turn cause a further deterioration of insulin sensitivity in a number of tissues, such as the vascular endothelium, muscle, and adipocytes (1).In the vascular endothelium, hyperglycemia has been shown to activate protein kinase C isoforms, give rise to increased levels of glucose-derived advanced glycation end products, and to cause an increased glucose flux through the aldose reductase pathway. Normalization of mitochondrial reactive oxygen species by a number of different approaches prevents these phenomena (2). In adipocytes, Tang and colleagues (3) have shown that a combination of hyperglycemia and hyperinsulinemia results in reduced insulin-stimulated glucose uptake that was in part because of reduced insulin receptor dephosphorylation.Gagnon and Sorisky (4) have previously assessed the effects of low and high glucose levels on 3T3-L1 adipocytes and reported effects on insulin-mediated IRS-1 1 phosphorylation and associated phosphatidylinositol kinase activity. Lu and coll...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.