A full-scale field study was conducted to investigate the effects of rainfall infiltration on a natural grassed expansive soil slope in China. A 16 m wide × 28 m long area was selected for instrumentation. The instrumentation included jet-filled tensiometers, moisture probes, a tipping bucket rain gauge, and a vee-notch flow meter. One artificial rainfall event amounting to about 370 mm rain depth in total was applied to the slope. The monitored results suggested that there was about a 3 day delay in the response of surface runoff, pore-water pressure, and water content to the commencement of the simulated rainfall. The depth of influence of the rainfall, depending on the elevation along the slope, ranged from 2.8 to 3.5 m. Positive pore-water pressures were measured within the influence depth, and there existed significant subsurface downslope flow at the end of the simulated rainfall, particularly near the lower part of the slope. A comparison of infiltration rates between the grassed area and a bare area nearby indicated that the presence of grass significantly increased the infiltration rate and reduced surface runoff. The cracks and fissures developed in the unsaturated expansive soil played an important role in the hydrological process.Key words: expansive soil, slope instability, infiltration, vegetation cover, grass, soil suction, water content, unsaturated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.