Data from a statewide billing and information system for early intervention are used to examine the influence of multiple factors on the level and intensity of services provided in a state early intervention system. Results indicate that child and family factors including entry age, gestational age, Medicaid eligibility, access to third party insurance, and children's developmental skill areas influence the level and the intensity of early intervention services provided. In addition, findings show that county demographic factors also influence service provision, specifically the interaction between rural and poverty status. Implications for social policy are discussed.
BackgroundGreater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the first of a two-part series that introduces such a framework.MethodsWe propose describing a birthweight distribution via a normal mixture model in which the number of components is determined from the data using a model selection criterion rather than fixed a priori.ResultsWe address a number of methodological issues, including how the number of components selected depends on the sample size, how the choice of model selection criterion influences the results, and how estimates of mixture model parameters based on multiple samples from the same population can be combined to produce confidence intervals. As an illustration, we find that a 4-component normal mixture model reasonably describes the birthweight distribution for a population of white singleton infants born to heavily smoking mothers. We also compare this 4-component normal mixture model to two competitors from the existing literature: a contaminated normal model and a 2-component normal mixture model. In a second illustration, we discover that a 6-component normal mixture model may be more appropriate than a 4-component normal mixture model for a general population of black singletons.ConclusionsThe framework developed in this paper avoids assuming the existence of an interval of birthweights over which there are no compromised pregnancies and does not constrain birthweights within compromised pregnancies to be normally distributed. Thus, the present framework can reveal heterogeneity in birthweight that is undetectable via a contaminated normal model or a 2-component normal mixture model.
Results are reported from a national validation survey of early childhood and early childhood special education professionals and family members related to guidelines for implementing accountability systems at the preschool level. Of the 47 statements included on the survey, 43 were validated by 75% or more of the 299 respondents. Specific implications for state and local programs involved in developing or refining accountability processes are presented in the areas of standards, assessment, and general accountability system design.
BackgroundGreater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the second of a two-part series that introduces such a framework.MethodsWe propose estimating birthweight-specific mortality within each component of a normal mixture model representing a birthweight distribution, the number of components having been determined from the data rather than fixed a priori.ResultsWe address a number of methodological issues related to our proposal, including the construction of confidence intervals for mortality risk at any given birthweight within a component, for odds ratios comparing mortality within two different components from the same population, and for odds ratios comparing mortality within analogous components from two different populations. As an illustration we find that, for a population of white singleton infants, the odds of mortality at 3000 g are an estimated 4.15 times as large in component 2 of a 4-component normal mixture model as in component 4 (95% confidence interval, 2.04 to 8.43). We also outline an extension of our framework through which covariates could be probabilistically related to mixture components. This extension might allow the assertion of approximate correspondences between mixture components and identifiable subpopulations.ConclusionsThe framework developed in this paper does not require infants from compromised pregnancies to share a common birthweight-specific mortality curve, much less assume the existence of an interval of birthweights over which all infants have the same curve. Hence, the present framework can reveal heterogeneity in mortality that is undetectable via a contaminated normal model or a 2-component normal mixture model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.