Proper estimation of soil reinforcement loads and strains is key to accurate internal stability design of reinforced soil structures. Current design methodologies use limit equilibrium concepts to estimate reinforcement loads for internal stability design of geosynthetic and steel reinforced soil walls. For geosynthetic walls, however, it appears that these methods are excessively conservative based on the performance of geosynthetic walls to date. This paper presents a new method, called the K-stiffness method, that is shown to give more accurate estimates of reinforcement loads, thereby reducing reinforcement quantities and improving the economy of geosynthetic walls. The paper is focused on the new method as it applies to geosynthetic walls constructed with granular (noncohesive, relatively low silt content) backfill soils. A database of 11 full-scale geosynthetic walls was used to develop the new design methodology based on working stress principles. The method considers the stiffness of the various wall components and their influence on reinforcement loads. Results of simple statistical analyses show that the current American Association of State Highway and Transportation Officials (AASHTO) Simplified Method results in an average ratio of measured to predicted loads (bias) of 0.45, with a coefficient of variation (COV) of 91%, whereas the proposed method results in an average bias of 0.99 and a COV of 36%. A principle objective of the method is to design the wall reinforcement so that the soil within the wall backfill is prevented from reaching a state of failure, consistent with the notion of working stress conditions. This concept represents a new approach for internal stability design of geosynthetic-reinforced soil walls because prevention of soil failure as a limit state is considered in addition to the current practice of preventing reinforcement rupture.Key words: geosynthetics, reinforcement, walls, loads, strains, design, K-stiffness method.
A verified fast Lagrangian analysis of continua (FLAC) numerical model is used to investigate the influence of horizontal toe stiffness on the performance of reinforced soil segmental retaining walls under working stress (operational) conditions. Results of full-scale shear testing of the interface between the bottom of a typical modular block and concrete or crushed stone levelling pads are used to back-calculate toe stiffness values. The results of numerical simulations demonstrate that toe resistance at the base of a reinforced soil segmental retaining wall can generate a significant portion of the resistance to horizontal earth loads in these systems. This partially explains why reinforcement loads under working stress conditions are typically overestimated using current limit equilibrium-based design methods. Other parameters investigated are wall height, interface shear stiffness between blocks, wall facing batter, reinforcement stiffness, and reinforcement spacing. Computed reinforcement loads are compared with predicted loads using the empirical-based K-stiffness method. The K-stiffness method predictions are shown to better capture the qualitative trends in numerical results and be quantitatively more accurate compared with the AASHTO simplified method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.