The assembly and egress of herpesviruses are complex processes that require the budding of viral nucleocapsids into the lumen of cytoplasmic compartments to form mature infectious virus. This envelopment stage shares many characteristics with the formation of luminal vesicles in multivesicular endosomes. Through expression of dominant-negative Vps4, an enzyme that is essential for the formation of luminal vesicles in multivesicular endosomes, we now show that Vps4 function is required for the cytoplasmic envelopment of herpes simplex virus type 1. This is the first example of a large enveloped DNA virus engaging the multivesicular endosome sorting machinery to enable infectious virus production.
A mutant of herpes simplex virus type 1 (HSV-1) in which glycoprotein H (gH) coding sequences were deleted and replaced by the Escherichia coli lacZ gene under the control of the human cytomegalovirus IE-1 gene promoter was constructed. The mutant was propagated in Vero cells which contained multiple copies of the HSV-1 gH gene under the control of the HSV-1 gD promoter and which therefore provide gH in trans following HSV-1 infection. Phenotypically gH-negative virions were obtained by a single growth cycle in Vero cells. These virions were noninfectious, as judged by plaque assay and by expression of I-galactosidase following high-multiplicity infection, but partial recovery of infectivity was achieved by using the fusogenic agent polyethylene glycol. Adsorption of gH-negative virions to cells blocked the adsorption of superinfecting wild-type virus, a result in contrast to that obtained with gD-negative virions (D. C. Johnson and M. W. Ligas, J. Virol. 62:4605-4612, 1988). The simplest conclusion is that gH is required for membrane fusion but not for receptor binding, a conclusion consistent with the conservation of gH in all herpesviruses.
Herpes simplex virus type 1 glycoproteins gB, gD, and gHgL were expressed by transient transfection of Cos cells. Polykaryocyte formation above the background level seen in untransfected controls was observed only if all three components were expressed. Thus, gB, gD, and gHgL are necessary and sufficient to induce membrane fusion.
Herpesvirus glycoprotein M (gM) is a multiple-spanning integral membrane protein found within the envelope of mature herpesviruses and is conserved throughout the Herpesviridae. gM is defined as a non-essential glycoprotein in alphaherpesviruses and has been proposed as playing a role in controlling final envelopment in a late secretory-pathway compartment such as the trans-Golgi network (TGN). Additionally, gM proteins have been shown to inhibit cell-cell fusion in transfection-based assays by an as yet unclear mechanism. Here, the effect of pseudorabies virus (PRV) gM and the herpes simplex virus type 1 (HSV-1) gM/UL49A complex on the fusion events caused by the HSV-1 glycoproteins gB, gD, gH and gL was investigated. Fusion of cells expressing HSV-1 gB, gD, gH and gL was efficiently inhibited by both PRV gM and HSV-1 gM/UL49A. Furthermore, expression of PRV gM or HSV-1 gM/UL49A, which are themselves localized to the TGN, caused both gD and gH/L to be relocalized from the plasma membrane to a juxtanuclear compartment, suggesting that fusion inhibition is caused by the removal of 'fusion' proteins from the cell surface. The ability of gM to cause the relocalization of plasma membrane proteins was not restricted to HSV-1 glycoproteins, as other viral and non-viral proteins were also affected. These data suggest that herpesvirus gM (gM/N) can alter the membrane trafficking itineraries of a broad range of proteins and this may have multiple functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.